Extending a classical theorem of Sperner, we investigate the question for which positive integers $m$ there exists a maximal antichain of size $m$ in the Boolean lattice $B_n$, that is, the power set of $[n]:=\{1,2,\dots,n\}$, ordered by inclusion. We characterize all such integers $m$ in the range $\binom{n}{\lceil n/2\rceil}-\lceil n/2\rceil^2\leq m\leq\binom{n}{\lceil n/2\rceil}$. As an important ingredient in the proof, we initiate the study of an extension of the Kruskal-Katona theorem which is of independent interest. For given positive integers $t$ and $k$, we ask which integers $s$ have the property that there exists a family $\mathcal F$ of $k$-sets with $\lvert\mathcal F\rvert=t$ such that the shadow of $\mathcal F$ has size $s$, where the shadow of $\mathcal F$ is the collection of $(k-1)$-sets that are contained in at least one member of $\mathcal F$. We provide a complete answer for the case $t\leq k+1$. Moreover, we prove that the largest integer which is not the shadow size of any family of $k$-sets is $\sqrt 2k^{3/2}+\sqrt[4]{8}k^{5/4}+O(k)$.


翻译:在扩展 Sperner 的古典理论时, 我们调查一个问题, 是否有正整数 $m0 在布林拉提( Boolean lattico) $B_ n$美元, 即 $[$n] 的电源集 :\\\ 1, 2,\ dots, n\ $。 我们用包含来标定所有这类整数 $\ binom{ n29\\\ rcele} - lcil n/2\leq\leq\binom{n\ lcelil nn/2\rcele}$。 作为证据中重要成分, 我们开始研究 Kruskk- korta 的电源集。 对于正整数 $qt$ 和 $k$, 我们问哪个整数是家族的 $lk- setset, $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【IJCAI2021】​单样本可供性检测
专知会员服务
9+阅读 · 2021年8月27日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
已删除
将门创投
4+阅读 · 2020年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年10月2日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员