We consider the problem of scheduling to minimize mean response time in M/G/1 queues where only estimated job sizes (processing times) are known to the scheduler, where a job of true size $s$ has estimated size in the interval $[\beta s, \alpha s]$ for some $\alpha \geq \beta > 0$. We evaluate each scheduling policy by its approximation ratio, which we define to be the ratio between its mean response time and that of Shortest Remaining Processing Time (SRPT), the optimal policy when true sizes are known. Our question: is there a scheduling policy that (a) has approximation ratio near 1 when $\alpha$ and $\beta$ are near 1, (b) has approximation ratio bounded by some function of $\alpha$ and $\beta$ even when they are far from 1, and (c) can be implemented without knowledge of $\alpha$ and $\beta$? We first show that naively running SRPT using estimated sizes in place of true sizes is not such a policy: its approximation ratio can be arbitrarily large for any fixed $\beta < 1$. We then provide a simple variant of SRPT for estimated sizes that satisfies criteria (a), (b), and (c). In particular, we prove its approximation ratio approaches 1 uniformly as $\alpha$ and $\beta$ approach 1. This is the first result showing this type of convergence for M/G/1 scheduling. We also study the Preemptive Shortest Job First (PSJF) policy, a cousin of SRPT. We show that, unlike SRPT, naively running PSJF using estimated sizes in place of true sizes satisfies criteria (b) and (c), as well as a weaker version of (a).
翻译:我们考虑的是将M/G/1队列的平均响应时间最小化的问题,因为排程员只知道估计的工作规模(处理时间),而真正规模的美元在 $\beta s,\alpha s] 之间的间隔内估计其规模为$[Beta s,\alpha s]$]美元,约美元为$\alpha\geq\beta > 0美元。我们用其近似比率来评估每项排程政策,我们定义的是其平均响应时间与最短的剩余处理时间(SRPPT时间)的比率,这是已知真实规模时的最佳政策。我们的问题是:(a) 当美元和美元的真实规模在1美元之间的间隔内有一个接近率,美元在美元和美元之间的间隔内,美元之间的近似比率在 $\b 之间有某种函数的间隔内。 (WEPTT) 以估计的直径比(我们的第一比值 ) 。