In this paper, we propose a reinforcement learning based algorithm for rate-profile construction of Arikan's Polarization Assisted Convolutional (PAC) codes. This method can be used for any blocklength, rate, list size under successive cancellation list (SCL) decoding and convolutional precoding polynomial. To the best of our knowledge, we present, for the first time, a set of new reward and update strategies which help the reinforcement learning agent discover much better rate-profiles than those present in existing literature. Simulation results show that PAC codes constructed with the proposed algorithm perform better in terms of frame erasure rate (FER) compared to the PAC codes constructed with contemporary rate profiling designs for various list lengths. Further, by using a (64, 32) PAC code as an example, it is shown that the choice of convolutional precoding polynomial can have a significant impact on rate-profile construction of PAC codes.
翻译:在本文中,我们建议为Arikan的极化辅助革命(PAC)代码的速率剖面构建采用基于强化学习的算法。 这种方法可用于连续取消列表解码和混合前编码的任何轮廓、 速率、 列表大小。 据我们所知,我们第一次提出一套新的奖励和更新战略, 帮助强化学习代理发现比现有文献中的速率剖面要好得多。 模拟结果表明, 以拟议算法构建的PAC代码在框架取消速率( FER) 方面比以当前速谱剖面图设计不同列表长度的 PAC 代码表现得更好。 此外, 以( 64 和 32) PAC 代码为例, 这表明, 选择卷前混合多盘面代码可以对标度构建 PAC 代码产生重大影响 。