Neural Radiance Fields (NeRF) have received considerable attention recently, due to its impressive capability in photo-realistic 3D reconstruction and novel view synthesis, given a set of posed camera images. Earlier work usually assumes the input images are in good quality. However, image degradation (e.g. image motion blur in low-light conditions) can easily happen in real-world scenarios, which would further affect the rendering quality of NeRF. In this paper, we present a novel bundle adjusted deblur Neural Radiance Fields (BAD-NeRF), which can be robust to severe motion blurred images and inaccurate camera poses. Our approach models the physical image formation process of a motion blurred image, and jointly learns the parameters of NeRF and recovers the camera motion trajectories during exposure time. In experiments, we show that by directly modeling the real physical image formation process, BAD-NeRF achieves superior performance over prior works on both synthetic and real datasets.
翻译:最近人们相当关注神经辐射场(Neoral Radiance Fields)(NeRF), 因为它在照片现实3D重建与新视觉合成方面的能力令人印象深刻, 并配有一套成相片图像。 早期的工作通常假定输入图像质量良好。 然而, 图像降解( 如低光条件下的图像移动模糊) 很容易在现实世界情景中发生, 这会进一步影响 NERF 的生成质量 。 本文展示了一个新的捆绑调整的调制神经神经辐射场( BAD- NeRF ), 它可以对严重运动模糊的图像和不精确的相机形成产生强大。 我们的方法模型模拟了运动模糊图像的物理图像形成过程, 并共同学习了 NERF 参数, 并在接触时恢复了相机的运动轨迹。 在实验中, 我们通过直接模拟真实的物理图像形成过程, BAD- NERF 取得了优于合成和真实数据集先前的作品的优异性表现 。