Batch normalization (BN) uniformly shifts and scales the activations based on the statistics of a batch of images. However, the intensity distribution of the background pixels often dominates the BN statistics because the background accounts for a large proportion of the entire image. This paper focuses on enhancing BN with the intensity distribution of foreground pixels, the one that really matters for image segmentation. We propose a new normalization strategy, named categorical normalization (CateNorm), to normalize the activations according to categorical statistics. The categorical statistics are obtained by dynamically modulating specific regions in an image that belong to the foreground. CateNorm demonstrates both precise and robust segmentation results across five public datasets obtained from different domains, covering complex and variable data distributions. It is attributable to the ability of CateNorm to capture domain-invariant information from multiple domains (institutions) of medical data. Code is available at https://github.com/lambert-x/CateNorm.


翻译:批量正常化( BN) 根据一组图像的统计, 统一移动和缩放激活。 但是, 背景像素的强度分布往往在 BN 统计中占主导地位, 因为背景占整个图像的很大比例。 本文侧重于通过表面像素的强度分布来增强 BN 。 这对图像分割确实很重要。 我们提出了一个新的正常化战略, 名为绝对正常化( CateNorm ), 以根据绝对统计数据实现激活的正常化。 绝对统计数据是动态调控特定区域、 属于地表的图像获得的。 CateNorm 展示了从不同领域获得的五个公共数据集的精确和稳健的分解结果, 涵盖复杂和可变的数据分布。 这要归功于 CateNorm 从医学数据多个领域( 机构) 获取域域域( ) 域( 系统) 的域变量信息的能力。 代码可在 https://github. com/lambert-x/ CateNorm 上查阅 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员