Batch normalization (BN) uniformly shifts and scales the activations based on the statistics of a batch of images. However, the intensity distribution of the background pixels often dominates the BN statistics because the background accounts for a large proportion of the entire image. This paper focuses on enhancing BN with the intensity distribution of foreground pixels, the one that really matters for image segmentation. We propose a new normalization strategy, named categorical normalization (CateNorm), to normalize the activations according to categorical statistics. The categorical statistics are obtained by dynamically modulating specific regions in an image that belong to the foreground. CateNorm demonstrates both precise and robust segmentation results across five public datasets obtained from different domains, covering complex and variable data distributions. It is attributable to the ability of CateNorm to capture domain-invariant information from multiple domains (institutions) of medical data. Code is available at https://github.com/lambert-x/CateNorm.
翻译:批量正常化( BN) 根据一组图像的统计, 统一移动和缩放激活。 但是, 背景像素的强度分布往往在 BN 统计中占主导地位, 因为背景占整个图像的很大比例。 本文侧重于通过表面像素的强度分布来增强 BN 。 这对图像分割确实很重要。 我们提出了一个新的正常化战略, 名为绝对正常化( CateNorm ), 以根据绝对统计数据实现激活的正常化。 绝对统计数据是动态调控特定区域、 属于地表的图像获得的。 CateNorm 展示了从不同领域获得的五个公共数据集的精确和稳健的分解结果, 涵盖复杂和可变的数据分布。 这要归功于 CateNorm 从医学数据多个领域( 机构) 获取域域域( ) 域( 系统) 的域变量信息的能力。 代码可在 https://github. com/lambert-x/ CateNorm 上查阅 。