Estimating a joint Highest Posterior Density credible set for a multivariate posterior density is challenging as dimension gets larger. Credible intervals for univariate marginals are usually presented for ease of computation and visualisation. There are often two layers of approximation, as we may need to compute a credible set for a target density which is itself only an approximation to the true posterior density. We obtain joint Highest Posterior Density credible sets for density estimation trees given by Li et al. (2016) approximating a density truncated to a compact subset of R^d as this is preferred to a copula construction. These trees approximate a joint posterior distribution from posterior samples using a piecewise constant function defined by sequential binary splits. We use a consistent estimator to measure of the symmetric difference between our credible set estimate and the true HPD set of the target density samples. This quality measure can be computed without the need to know the true set. We show how the true-posterior-coverage of an approximate credible set estimated for an approximate target density may be estimated in doubly intractable cases where posterior samples are not available. We illustrate our methods with simulation studies and find that our estimator is competitive with existing methods.
翻译:估计多变量后端密度的可靠联合高点, 随着维度的扩大, 难度很大。 通常会显示单向边缘的可靠间隔, 以便于计算和视觉化。 通常会有两层近似, 因为我们可能需要计算一个可靠的目标密度, 因为它本身只是真实的后端密度的近似值。 我们获得由Li 等人提供的密度估计树密度的可信联合高点。 接近于将密度流出至 RQd 的紧凑子组。 这些树大约是利用按顺序分解定义的拼图常数函数从远端样本中联合分配的远端。 我们使用一个一致的估测算器来衡量我们可靠的设定估计值与真实的 HPD 样组之间的对称差异。 这个质度测量可以不必了解真实的集。 我们展示了近似可靠的定点定值的近似可靠部分的近点分布, 其估计值的近似性定值比值方法可能无法被我们以具有竞争性的模型来估计。