We extend the framework of a posteriori error estimation by preconditioning in [Li, Y., Zikatanov, L.: Computers \& Mathematics with Applications. \textbf{91}, 192-201 (2021)] and derive new a posteriori error estimates for H(curl)-elliptic two-phase interface problems. The proposed error estimator provides two-sided bounds for the discretization error and is robust with respect to coefficient variation under mild assumptions. For H(curl) problems with constant coefficients, the performance of this estimator is numerically compared with the one analyzed in [Sch\"oberl, J.: Math.~Comp. \textbf{77}(262), 633-649 (2008)].
翻译:我们扩展了事后误差估计框架,在[Li, Y, Zikatanov, L.: 计算机- 应用数学:\ textbf{91}, 192-201 (2021)] 中设定前提, 并得出H(curl)- 椭圆两相界面问题的后继误差新估计数。 提议的误差估计符为离散误差提供了双向界限, 且在轻度假设下对系数变化具有强力。 对于H( curl) 常数问题, 该估计器的性能与[Sch\'oberl, J.: Math.~compt.\ textbf{77}(262), 633-649 (2008)] 中分析的数值相比。