Spatially resolved transcriptomics (ST) measures gene expression along with the spatial coordinates of the measurements. The analysis of ST data involves significant computation complexity. In this work, we propose gene expression dimensionality reduction algorithm that retains spatial structure. We combine the wavelet transformation with matrix factorization to select spatially-varying genes. We extract a low-dimensional representation of these genes. We consider Empirical Bayes setting, imposing regularization through the prior distribution of factor genes. Additionally, We provide visualization of extracted representation genes capturing the global spatial pattern. We illustrate the performance of our methods by spatial structure recovery and gene expression reconstruction in simulation. In real data experiments, our method identifies spatial structure of gene factors and outperforms regular decomposition regarding reconstruction error. We found the connection between the fluctuation of gene patterns and wavelet technique, providing smoother visualization. We develop the package and share the workflow generating reproducible quantitative results and gene visualization. The package is available at https://github.com/OliverXUZY/waveST.
翻译:空间溶解光谱学(ST)测量基因表达以及测量的空间坐标。对ST数据的分析涉及重大的计算复杂性。在这项工作中,我们提出保留空间结构的基因表达式维度减少算法。我们将波盘变换与矩阵因子化相结合以选择空间变异基因。我们从中提取了这些基因的低维代表物。我们考虑“经验贝斯”设置,通过要素基因的先前分布进行正规化。此外,我们提供提取代表基因的可视化,以捕捉全球空间模式。我们通过空间结构恢复和模拟基因表达重建来说明我们方法的绩效。在实际数据实验中,我们的方法确定了基因因素的空间结构,并超越了重建错误的常规变形。我们发现了基因模式的波动和波子技术之间的联系,提供了光滑的视觉化。我们开发了软件包,并分享了产生可再生量化结果和基因可视化的工作流程。软件包可以在https://github.com/OliverXY/波子中查阅。