Model diagnostics is an indispensable component of regression analysis, yet it is not well addressed in standard textbooks on generalized linear models. The lack of exposition is attributed to the fact that when outcome data are discrete, classical methods (e.g., Pearson/deviance residual analysis and goodness-of-fit tests) have limited utility in model diagnostics and treatment. This paper establishes a novel framework for model diagnostics of discrete data regression. Unlike the literature defining a single-valued quantity as the residual, we propose to use a function as a vehicle to retain the residual information. In the presence of discreteness, we show that such a functional residual is appropriate for summarizing the residual randomness that cannot be captured by the structural part of the model. We establish its theoretical properties, which leads to the innovation of new diagnostic tools including the functional-residual-vs covariate plot and Function-to-Function (Fn-Fn) plot. Our numerical studies demonstrate that the use of these tools can reveal a variety of model misspecifications, such as not properly including a higher-order term, an explanatory variable, an interaction effect, a dispersion parameter, or a zero-inflation component. The functional residual yields, as a byproduct, Liu-Zhang's surrogate residual mainly developed for cumulative link models for ordinal data (Liu and Zhang, 2018, JASA). As a general notion, it considerably broadens the diagnostic scope as it applies to virtually all parametric models for binary, ordinal and count data, all in a unified diagnostic scheme.
翻译:模型诊断是回归分析不可或缺的组成部分,但在通用线性模型的标准教科书中并没有很好地解决模型诊断问题。缺乏解释的原因是,当结果数据离散时,古典方法(例如皮尔逊/证据残余分析和良好测试)在模型诊断和处理方面效用有限。本文为离散数据回归的模型诊断提供了一个新框架。与界定单一价值数量作为剩余数据的文献不同,我们提议使用一种功能作为保存剩余信息的工具。在存在离散性的情况下,我们表明,这种功能剩余对于总结模型结构部分无法捕捉的剩余随机性是合适的。我们建立了理论属性,导致新诊断工具的创新,包括功能反常变变换图和函数对数据回归图。我们的数字研究表明,使用这些工具可以显示各种模型的分类,例如不适当地包括更高等级的诊断术语、一个解释性、一个互动性的误差性模型、一个功能性分析模型,一个功能性模型,一个功能性变数模型,一个功能性变数模型,一个功能性变数模型,一个功能性变数模型,一个轨道,一个功能性模型,一个数值变数级模型,一个轨道,一个轨道,一个数据级模型,一个数据级系统,一个轨道,一个数据级模型,一个核心,一个数据级,一个数据级,一个轨道,一个轨道,一个数据级,一个功能性变数级,一个数据级,一个数据级,一个数据级,一个数据级,一个数据级,一个数据级,一个数据级,一个数据级,一个数据级,一个数据级,一个。Z级。