Polynomial expansions are important in the analysis of neural network nonlinearities. They have been applied thereto addressing well-known difficulties in verification, explainability, and security. Existing approaches span classical Taylor and Chebyshev methods, asymptotics, and many numerical approaches. We find that while these individually have useful properties such as exact error formulas, adjustable domain, and robustness to undefined derivatives, there are no approaches that provide a consistent method yielding an expansion with all these properties. To address this, we develop an analytically modified integral transform expansion (AMITE), a novel expansion via integral transforms modified using derived criteria for convergence. We show the general expansion and then demonstrate application for two popular activation functions, hyperbolic tangent and rectified linear units. Compared with existing expansions (i.e., Chebyshev, Taylor, and numerical) employed to this end, AMITE is the first to provide six previously mutually exclusive desired expansion properties such as exact formulas for the coefficients and exact expansion errors (Table II). We demonstrate the effectiveness of AMITE in two case studies. First, a multivariate polynomial form is efficiently extracted from a single hidden layer black-box Multi-Layer Perceptron (MLP) to facilitate equivalence testing from noisy stimulus-response pairs. Second, a variety of Feed-Forward Neural Network (FFNN) architectures having between 3 and 7 layers are range bounded using Taylor models improved by the AMITE polynomials and error formulas. AMITE presents a new dimension of expansion methods suitable for analysis/approximation of nonlinearities in neural networks, opening new directions and opportunities for the theoretical analysis and systematic testing of neural networks.
翻译:在分析神经网络非线性特性时, 聚合扩张很重要。 已经应用它们来应对在核查、 解释和安全方面众所周知的困难。 现有方法包括古典泰勒和Chebyshev方法、 杂现和许多数字方法。 我们发现, 虽然这些个别方法具有有用的属性, 如精确错误公式、 可调整域和对未定义衍生物的稳健性, 但是没有办法提供一致的方法, 从而产生所有这些属性的扩展。 为了解决这个问题, 我们开发了一个经过分析修改的整体变换扩展( AMITE), 一种通过通过衍生的趋同标准修改整体变换的新扩展。 我们展示了总体扩展, 然后展示了两种大众激活功能的应用, 超曲正正正和修正线性单位。 与目前用于此目的的扩展( 即切比谢夫、 可调整域域域以及未定义衍生物的强性等) 相比, AMITE是第一个提供六种相互排斥的扩展属性, 例如精确的系数和精确的增缩度变形变形变形模型( 表二) 我们用两个案例研究来展示了Amal 。 首先, 多变式的多变调调的货币网络的货币网络的亚级分析, 将一个隐藏的自动变式的货币结构的货币结构的货币结构 测试, 。