Accurate downlink channel state information (CSI) is vital to achieving high spectrum efficiency in massive MIMO systems. Existing works on the deep learning (DL) model for CSI feedback have shown efficient compression and recovery in frequency division duplex (FDD) systems. However, practical DL networks require sizeable wireless CSI datasets during training to achieve high model accuracy. To address this labor-intensive problem, this work develops an efficient training enhancement solution of DL-based feedback architecture based on a modest dataset by exploiting the complex CSI features, and augmenting CSI dataset based on domain knowledge. We first propose a spherical CSI feedback network, SPTM2-ISTANet+, which employs the spherical normalization framework to mitigate the effect of path loss variation. We exploit the trainable measurement matrix and residual recovery structure to improve the encoding efficiency and recovery accuracy. For limited CSI measurements, we propose a model-driven lightweight and universal augmentation strategy based on decoupling CSI magnitude and phase information, applying the circular shift in angular-delay domain, and randomizing the CSI phase to approximate phase distribution. Test results demonstrate the efficacy and efficiency of the proposed training strategy and feedback architecture for accurate CSI feedback under limited measurements.


翻译:在大型MIMO系统中,准确的下行链路渠道状态信息(CSI)对于实现大型MIMO系统的高频效率至关重要。关于CSI反馈的深度学习(DL)模式的现有工作显示,在频率司(DFD)系统中,压缩和回收是有效的。然而,实用的DL网络在培训期间需要大量无线的CSI数据集,以实现高模型准确性。为了解决这一劳动密集型问题,这项工作在利用复杂的 CSI 特征和基于域知识的扩大 CSI 数据集的微小数据集的基础上,开发了基于 DL 的反馈结构的有效培训强化解决方案。我们首先提议了一个球球形 CSI 反馈网络,即 COPM2-ISTANet+, 使用球形正常化框架来减轻路径损失变异的影响。我们利用可训练的测量矩阵和残余恢复结构来提高编码效率和回收准确性。关于CSI 有限的测量,我们提出一个以模型驱动的轻度和普遍增强战略,其基础是分离CSI 规模和阶段信息,应用矩交错换域,并将CSI 阶段的随机调整为CSI 精确的反馈战略。测试结果显示CSI 拟议的CSI 的效能和有效性和有效性和有效性。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月24日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员