Accurate downlink channel state information (CSI) is vital to achieving high spectrum efficiency in massive MIMO systems. Existing works on the deep learning (DL) model for CSI feedback have shown efficient compression and recovery in frequency division duplex (FDD) systems. However, practical DL networks require sizeable wireless CSI datasets during training to achieve high model accuracy. To address this labor-intensive problem, this work develops an efficient training enhancement solution of DL-based feedback architecture based on a modest dataset by exploiting the complex CSI features, and augmenting CSI dataset based on domain knowledge. We first propose a spherical CSI feedback network, SPTM2-ISTANet+, which employs the spherical normalization framework to mitigate the effect of path loss variation. We exploit the trainable measurement matrix and residual recovery structure to improve the encoding efficiency and recovery accuracy. For limited CSI measurements, we propose a model-driven lightweight and universal augmentation strategy based on decoupling CSI magnitude and phase information, applying the circular shift in angular-delay domain, and randomizing the CSI phase to approximate phase distribution. Test results demonstrate the efficacy and efficiency of the proposed training strategy and feedback architecture for accurate CSI feedback under limited measurements.
翻译:在大型MIMO系统中,准确的下行链路渠道状态信息(CSI)对于实现大型MIMO系统的高频效率至关重要。关于CSI反馈的深度学习(DL)模式的现有工作显示,在频率司(DFD)系统中,压缩和回收是有效的。然而,实用的DL网络在培训期间需要大量无线的CSI数据集,以实现高模型准确性。为了解决这一劳动密集型问题,这项工作在利用复杂的 CSI 特征和基于域知识的扩大 CSI 数据集的微小数据集的基础上,开发了基于 DL 的反馈结构的有效培训强化解决方案。我们首先提议了一个球球形 CSI 反馈网络,即 COPM2-ISTANet+, 使用球形正常化框架来减轻路径损失变异的影响。我们利用可训练的测量矩阵和残余恢复结构来提高编码效率和回收准确性。关于CSI 有限的测量,我们提出一个以模型驱动的轻度和普遍增强战略,其基础是分离CSI 规模和阶段信息,应用矩交错换域,并将CSI 阶段的随机调整为CSI 精确的反馈战略。测试结果显示CSI 拟议的CSI 的效能和有效性和有效性和有效性。