Causal discovery algorithms aims at untangling complex causal relationships using observational data only. Here, we introduce new causal discovery algorithms based on staged tree models, which can represent complex and non-symmetric causal effects. To demonstrate the efficacy of our algorithms, we introduce a new distance, inspired by the widely used structural interventional distance, to quantify the closeness between two staged trees in terms of their corresponding causal inference statements. A simulation study highlights the efficacy of staged trees in uncovering complex, asymmetric causal relationship from data and a real-world data application illustrates their use in a practical causal analysis.
翻译:原因发现算法的目的是仅仅使用观测数据来解开复杂的因果关系。 在这里, 我们引入基于分阶段树模型的新的因果发现算法, 这可以代表复杂和非对称的因果关系效果。 为了证明我们算法的功效, 我们引入了一种新的距离, 受广泛使用的结构性干预距离的启发, 以便用相应的因果推理说明来量化两个分阶段树之间的近距离。 模拟研究突出显示了从数据和现实世界数据应用中发现复杂、 不对称因果关系的效果, 展示了它们在实际因果分析中的用途 。