We propose an instrumental variable (IV) selection procedure which combines the agglomerative hierarchical clustering method and the Hansen-Sargan overidentification test for selecting valid instruments for IV estimation from a large set of candidate instruments. Some of the instruments may be invalid in the sense that they may fail the exclusion restriction. We show that under the plurality rule, our method can achieve oracle selection and estimation results. Compared to the previous IV selection methods, our method has the advantages that it can deal with the weak instruments problem effectively, and can be easily extended to settings where there are multiple endogenous regressors and heterogenous treatment effects. We conduct Monte Carlo simulations to examine the performance of our method, and compare it with two existing methods, the Hard Thresholding method (HT) and the Confidence Interval method (CIM). The simulation results show that our method achieves oracle selection and estimation results in both single and multiple endogenous regressors settings in large samples when all the instruments are strong. Also, our method works well when some of the candidate instruments are weak, outperforming HT and CIM. We apply our method to the estimation of the effect of immigration on wages in the US.
翻译:我们提出了一个工具变量(IV)选择程序,将集中等级集群法和汉森-沙尔根(Hansen-Sargan)对从大量候选工具中选择有效仪器进行四类估算的有效仪器的识别测试结合起来,从中选择一套大型候选工具中选择有效仪器来进行四类估算。有些工具可能无法达到排除限制,因此可能无效。我们表明,根据多元规则,我们的方法可以达到选择和估算结果。与以前的四类选择方法相比,我们的方法具有优势,它可以有效处理薄弱仪器问题,并且很容易推广到存在多种内生反射器和异质治疗效应的环境下。我们进行蒙特卡洛模拟,以检查我们的方法的性能,并将它与两种现有方法,即硬牵引法(HT)和互信法(CIM)进行比较。模拟结果表明,我们的方法在大型样本中单个和多个内生递增器环境都取得了选择和估算结果。此外,我们的方法在有些候选工具薄弱、表现不及超效的HT和CIM的情况下运作良好。我们运用了对美国移民工资影响的估计方法。我们运用了我们的方法。