We propose an instrumental variable (IV) selection procedure which combines the agglomerative hierarchical clustering method and the Hansen-Sargan overidentification test for selecting valid instruments for IV estimation from a large set of candidate instruments. Some of the instruments may be invalid in the sense that they may fail the exclusion restriction. We show that under the plurality rule, our method can achieve oracle selection and estimation results. Compared to the previous IV selection methods, our method has the advantages that it can deal with the weak instruments problem effectively, and can be easily extended to settings where there are multiple endogenous regressors and heterogenous treatment effects. We conduct Monte Carlo simulations to examine the performance of our method, and compare it with two existing methods, the Hard Thresholding method (HT) and the Confidence Interval method (CIM). The simulation results show that our method achieves oracle selection and estimation results in both single and multiple endogenous regressors settings in large samples when all the instruments are strong. Also, our method works well when some of the candidate instruments are weak, outperforming HT and CIM. We apply our method to the estimation of the effect of immigration on wages in the US.


翻译:我们提出了一个工具变量(IV)选择程序,将集中等级集群法和汉森-沙尔根(Hansen-Sargan)对从大量候选工具中选择有效仪器进行四类估算的有效仪器的识别测试结合起来,从中选择一套大型候选工具中选择有效仪器来进行四类估算。有些工具可能无法达到排除限制,因此可能无效。我们表明,根据多元规则,我们的方法可以达到选择和估算结果。与以前的四类选择方法相比,我们的方法具有优势,它可以有效处理薄弱仪器问题,并且很容易推广到存在多种内生反射器和异质治疗效应的环境下。我们进行蒙特卡洛模拟,以检查我们的方法的性能,并将它与两种现有方法,即硬牵引法(HT)和互信法(CIM)进行比较。模拟结果表明,我们的方法在大型样本中单个和多个内生递增器环境都取得了选择和估算结果。此外,我们的方法在有些候选工具薄弱、表现不及超效的HT和CIM的情况下运作良好。我们运用了对美国移民工资影响的估计方法。我们运用了我们的方法。

0
下载
关闭预览

相关内容

层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
151+阅读 · 2020年12月30日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【德勤】中国人工智能产业白皮书,68页pdf
专知会员服务
304+阅读 · 2019年12月23日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
6+阅读 · 2018年4月21日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员