Flocking control is a significant problem in multi-agent systems such as multi-agent unmanned aerial vehicles and multi-agent autonomous underwater vehicles, which enhances the cooperativity and safety of agents. In contrast to traditional methods, multi-agent reinforcement learning (MARL) solves the problem of flocking control more flexibly. However, methods based on MARL suffer from sample inefficiency, since they require a huge number of experiences to be collected from interactions between agents and the environment. We propose a novel method Pretraining with Demonstrations for MARL (PwD-MARL), which can utilize non-expert demonstrations collected in advance with traditional methods to pretrain agents. During the process of pretraining, agents learn policies from demonstrations by MARL and behavior cloning simultaneously, and are prevented from overfitting demonstrations. By pretraining with non-expert demonstrations, PwD-MARL improves sample efficiency in the process of online MARL with a warm start. Experiments show that PwD-MARL improves sample efficiency and policy performance in the problem of flocking control, even with bad or few demonstrations.


翻译:多剂无人驾驶飞行器和多剂自主水下飞行器等多试剂系统中的封锁控制是一个重大问题,它加强了代理人的协作和安全;与传统方法不同,多剂强化学习(MARL)更灵活地解决了羊群控制问题;但是,基于MARL的方法缺乏效率,因为需要从代理人与环境之间的互动中收集大量经验,因此,根据MARL采用的方法缺乏效率;我们提议采用新方法,为MARL(PwD-MARL)举办示范培训,这种示范可使用传统方法预先收集的非专家演示来培养代理人;在培训前阶段,代理人从MARL的演示中学习政策,同时进行行为克隆,防止过分适应示威;通过非专家演示培训,PwD-MARL提高网上MARL过程的取样效率,从一个温暖的开端开始;实验显示,PwD-MARL在羊控制问题上提高样品效率和政策性能,即使是不良或很少的演示。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员