Effort in releasing large-scale datasets may be compromised by privacy and intellectual property considerations. A feasible alternative is to release pre-trained models instead. While these models are strong on their original task (source domain), their performance might degrade significantly when deployed directly in a new environment (target domain), which might not contain labels for training under realistic settings. Domain adaptation (DA) is a known solution to the domain gap problem, but usually requires labeled source data. In this paper, we study the problem of source free domain adaptation (SFDA), whose distinctive feature is that the source domain only provides a pre-trained model, but no source data. Being source free adds significant challenges to DA, especially when considering that the target dataset is unlabeled. To solve the SFDA problem, we propose an image translation approach that transfers the style of target images to that of unseen source images. To this end, we align the batch-wise feature statistics of generated images to that stored in batch normalization layers of the pre-trained model. Compared with directly classifying target images, higher accuracy is obtained with these style transferred images using the pre-trained model. On several image classification datasets, we show that the above-mentioned improvements are consistent and statistically significant.


翻译:发布大型数据集的努力可能会受到隐私和知识产权考虑的损害。 一个可行的替代办法是释放预先培训的模型。 虽然这些模型在原始任务(源域)上表现很强, 但是当这些模型在新环境( 目标域) 直接部署时,其性能可能会显著下降, 新环境( 目标域) 可能不包含培训标签, 在现实环境中, 这些新环境( 目标域) 可能不会包含培训标签 。 域适应( DA) 是已知的域间差距问题的解决方案, 但通常需要标签源源数据 。 在本文件中, 我们研究源域自由调整( SFDA) 的问题, 其特征是源域仅提供预先培训的模型, 但没有源数据。 成为免费源对 DA 带来重大挑战。 特别是考虑到目标数据集未加标签时, 当目标数据集被直接部署时, 我们建议一种图像转换方法, 将目标图像的样式转换到未见源图像图像的分级标准层 。 与直接分类的图像比较, 与直接分类相比, 以这些样式传输的图像获得了更高的准确性, 使用预先培训的模型 。 在几个图像分类中, 我们显示重大的改进 。

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员