In this paper, we propose a simple and easy-to-implement Bayesian hypothesis test for the presence of an association, described by Kendall's \tau coefficient, between two variables measured on at least an ordinal scale. Owing to the absence of the likelihood functions for the data, we employ the asymptotic sampling distributions of the test statistic as the working likelihoods and then specify a truncated normal prior distribution on the noncentrality parameter of the alternative hypothesis, which results in the Bayes factor available in closed form in terms of the cumulative distribution function of the standard normal distribution. Investigating the asymptotic behavior of the Bayes factor we find the conditions of the priors so that it is consistent to whichever the hypothesis is true. Simulation studies and a real-data application are used to illustrate the effectiveness of the proposed Bayes factor. It deserves mentioning that the proposed method can be easily covered in undergraduate and graduate courses in nonparametric statistics with an emphasis on students' Bayesian thinking for data analysis.
翻译:在本文中,我们建议对一个协会的存在进行简单和容易执行的巴伊西亚假设测试,Kendall\tou系数所描述的这一假设是在至少一个正统尺度上衡量的两个变量之间进行的。由于缺乏数据的可能功能,我们使用测试统计数据的无症状抽样分布作为工作可能性,然后对替代假设的非集中参数进行简短的正常先前分配,从而在标准正常分布的累积分布功能方面形成封闭形式的贝伊系数。调查贝伊斯系数的无症状行为,我们发现先前两个系数的条件,以便它与任何真实假设相一致。我们使用模拟研究和真实数据应用来说明拟议贝伊斯系数的有效性。值得指出的是,拟议的方法很容易在非对称统计的本科和研究生课程中涵盖,重点是学生的贝伊斯人思考数据分析。