We explore a framework for addressing causal questions in an observational setting with multiple treatments. This setting involves attempting to approximate an experiment from observational data. With multiple treatments, this experiment would be a factorial design. However, certain treatment combinations may be so rare that there are no measured outcomes in the observed data corresponding to them. We propose to conceptualize a hypothetical fractional factorial experiment instead of a full factorial experiment and lay out a framework for analysis in this setting. We connect our design-based methods to standard regression methods. We finish by illustrating our approach using biomedical data from the 2003-2004 cycle of the National Health and Nutrition Examination Survey to estimate the effects of four common pesticides on body mass index.


翻译:我们探索一个框架,在多种治疗的观察环境中解决因果问题。这一框架涉及试图从观察数据中将实验与实验相近。在多种治疗中,这一实验将是一个要素设计。然而,某些治疗组合可能非常罕见,因此在观察到的对应数据中没有衡量结果。我们提议设想一种假设的分因数实验,而不是一个完全的因数实验,并在此背景下建立一个分析框架。我们将我们的设计方法与标准回归方法联系起来。我们最后用2003-2004年国家健康和营养调查周期的生物医学数据来说明我们的方法,以估计四种常见农药对人体质量指数的影响。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
15+阅读 · 2020年12月17日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
112+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
15+阅读 · 2020年12月17日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
112+阅读 · 2020年2月5日
Arxiv
4+阅读 · 2018年4月26日
Top
微信扫码咨询专知VIP会员