Object goal visual navigation is a challenging task that aims to guide a robot to find the target object only based on its visual observation, and the target is limited to the classes specified in the training stage. However, in real households, there may exist numerous object classes that the robot needs to deal with, and it is hard for all of these classes to be contained in the training stage. To address this challenge, we propose a zero-shot object navigation task by combining zero-shot learning with object goal visual navigation, which aims at guiding robots to find objects belonging to novel classes without any training samples. This task gives rise to the need to generalize the learned policy to novel classes, which is a less addressed issue of object navigation using deep reinforcement learning. To address this issue, we utilize "class-unrelated" data as input to alleviate the overfitting of the classes specified in the training stage. The class-unrelated input consists of detection results and cosine similarity of word embeddings, and does not contain any class-related visual features or knowledge graphs. Extensive experiments on the AI2-THOR platform show that our model outperforms the baseline models in both seen and unseen classes, which proves that our model is less class-sensitive and generalizes better. Our code is available at https://github.com/pioneer-innovation/Zero-Shot-Object-Navigation


翻译:视觉目标导航是一项具有挑战性的任务,它旨在引导机器人仅根据其视觉观测找到目标对象,而目标仅限于培训阶段指定的课程。然而,在实际住户中,机器人可能需要处理的物体类别可能很多,而所有这些类别都很难包含在培训阶段。为了应对这一挑战,我们提议了一个零射物体导航任务,将零射学习与对象目标视觉导航结合起来,目的是引导机器人在没有任何培训样本的情况下找到属于新类的物体。这一任务导致有必要将所学的政策推广到新类,而新类是利用深层强化学习处理较少的物体导航问题。为了解决这个问题,我们使用“与阶级无关”的数据作为投入,以缓解培训阶段指定的课程的过度匹配。与阶级无关的投入包括检测结果和词汇嵌入相似性,并且不包含任何与阶级相关的视觉特征或知识图表。在 AI2-THOOR平台上的广泛实验显示,我们的模型比常规模型要优于N型模型,而在我们班级/秘密课程中,我们看到的是更差的。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月1日
Arxiv
17+阅读 · 2021年2月15日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员