In this paper, we propose an efficient secure aggregation scheme for federated learning that is protected against Byzantine attacks and privacy leakages. Processing individual updates to manage adversarial behavior, while preserving privacy of data against colluding nodes, requires some sort of secure secret sharing. However, communication load for secret sharing of long vectors of updates can be very high. To resolve this issue, in the proposed scheme, local updates are partitioned into smaller sub-vectors and shared using ramp secret sharing. However, this sharing method does not admit bi-linear computations, such as pairwise distance calculations, needed by outlier-detection algorithms. To overcome this issue, each user runs another round of ramp sharing, with different embedding of data in the sharing polynomial. This technique, motivated by ideas from coded computing, enables secure computation of pairwise distance. In addition, to maintain the integrity and privacy of the local update, the proposed scheme also uses a vector commitment method, in which the commitment size remains constant (i.e. does not increase with the length of the local update), while simultaneously allowing verification of the secret sharing process.
翻译:在本文中,我们提出一个高效的联邦学习安全汇总计划,保护其不受拜占庭攻击和隐私泄漏的影响。 处理个人更新以管理对抗性行为,同时保护数据在串通节点之间的隐私,需要某种安全的秘密共享。 但是,秘密共享长向矢量更新的通信负担可能非常大。 为了解决这个问题,在拟议的计划中,地方更新被分割成较小的子矢量,并使用斜坡秘密共享来共享。 但是,这种共享方法并不包含双线计算,如对称距离计算,这是局外检测算法所需要的。 要克服这一问题,每个用户将进行另一轮坡道共享,在共享多面节点共享中嵌入不同的数据。 由编码计算中的想法驱动的这一技术可以安全地计算对称距离。 此外,为了维护本地更新的完整性和隐私,拟议计划还使用矢量承诺方法,其中的承诺规模保持不变( 即不增加本地更新的长度),同时允许核查秘密共享进程。