Efficiently running federated learning (FL) on resource-constrained devices is challenging since they are required to train computationally intensive deep neural networks (DNN) independently. DNN partitioning-based FL (DPFL) has been proposed as one mechanism to accelerate training where the layers of a DNN (or computation) are offloaded from the device to an edge server. However, this creates significant communication overheads since the activation and gradient need to be transferred between the device and the edge server during training. Current techniques reduce the communication introduced by DNN partitioning using local loss-based methods. We demonstrate that these methods adversely impact accuracy and ignore the communication costs incurred when transmitting the activation from the device to the server. This paper proposes ActionFed - a communication efficient framework for DPFL to accelerate training on resource-constrained devices. ActionFed eliminates the transmission of the gradient by developing pre-trained initialization of the DNN model on the device for the first time. This reduces the accuracy degradation seen in local loss-based methods. In addition, ActionFed proposes a novel replay buffer mechanism and implements a quantization-based compression technique to reduce the transmission of the activation. It is experimentally demonstrated that ActionFed can reduce the communication cost by up to 15.77x and accelerates training by up to 3.87x when compared to vanilla DPFL.


翻译:联邦学习(FL)在资源受限设备上高效运行的挑战是训练计算密集的深度神经网络(DNN)。DNN划分的FL(DPFL)被提出作为一种机制来加速训练,其中DNN的层(或计算)从设备移到边缘服务器。然而,此操作会产生大量的通信开销,因为在训练期间,激活和梯度需要在设备和边缘服务器之间传输。目前的技术使用基于本地损失的方法来减少DNN划分引入的通信。我们证明了这些方法对精度产生不利影响,而且忽略了在将激活从设备传输到服务器时产生的通信成本。本文提出了一种名为ActionFed的通信高效DPFL框架,旨在加速在资源受限设备上的训练。ActionFed通过首次在设备上开发预训练的DNN模型的初始化来消除梯度传输,从而减少了基于本地损失的方法中出现的精度下降。此外,ActionFed提出了一种新颖的重放缓冲区机制,并实现了一种基于量化的压缩技术以减少激活的传输。实验结果表明,与香草DPFL相比,ActionFed可以将通信成本降低高达15.77倍,训练加速高达3.87倍。

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
7+阅读 · 2022年12月9日
联邦学习智慧医疗综述
专知会员服务
122+阅读 · 2021年11月27日
专知会员服务
66+阅读 · 2021年8月1日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
101+阅读 · 2020年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员