We propose a new mathematical model for the interaction of skin cell populations with fibroblast growth factor and bone morphogenetic protein, occurring within deformable porous media. The equations for feather primordia pattering are based on the work by K.J. Painter et al. [J. Theoret. Biol., 437 (2018) 225--238]. We perform a linear stability analysis to identify relevant parameters in the coupling mechanisms, focusing in the regime of infinitesimal strains. We also extend the model to the case of nonlinear poroelasticity and include solid growth by means of Lee decompositions of the deformation gradient. We present a few illustrative computational examples in 2D and 3D, and briefly discuss the design of tailored efficient solvers.
翻译:我们为皮肤细胞与纤维增殖系数和骨质形态蛋白的相互作用提出了一个新的数学模型,该模型在可变形的多孔介质中出现。羽毛长颈切片的方程式以K.J.Painterer等人[J.Theort.Biol.,437(2018)225-238]的工作为基础。我们进行了线性稳定分析,以确定结合机制的相关参数,重点是微量菌株的制度。我们还将该模型扩大到非线性孔径弹性,包括以李氏变形梯度分解法为手段的固态生长。我们在2D和3D中提供了几个示例性计算示例,并简要讨论了定制高效溶液的设计。