Due to the increasing trend of performing spamming activities (e.g., Web spam, deceptive reviews, fake followers, etc.) on various online platforms to gain undeserved benefits, spam detection has emerged as a hot research issue. Previous attempts to combat spam mainly employ features related to metadata, user behaviors, or relational ties. These works have made considerable progress in understanding and filtering spamming campaigns. However, this problem remains far from fully solved. Almost all the proposed features focus on a limited number of observed attributes or explainable phenomena, making it difficult for existing methods to achieve further improvement. To broaden the vision about solving the spam problem and address long-standing challenges (class imbalance and graph incompleteness) in the spam detection area, we propose a new attempt of utilizing signed latent factors to filter fraudulent activities. The spam-contaminated relational datasets of multiple online applications in this scenario are interpreted by the unified signed network. Two competitive and highly dissimilar algorithms of latent factors mining (LFM) models are designed based on multi-relational likelihoods estimation (LFM-MRLE) and signed pairwise ranking (LFM-SPR), respectively. We then explore how to apply the mined latent factors to spam detection tasks. Experiments on real-world datasets of different kinds of Web applications (social media and Web forum) indicate that LFM models outperform state-of-the-art baselines in detecting spamming activities. By specifically manipulating experimental data, the effectiveness of our methods in dealing with incomplete and imbalanced challenges is valida


翻译:由于在各种在线平台上开展垃圾活动(如网络垃圾邮件、欺骗性评论、假追随者等)的趋势日益增长,以获得当之无愧的收益,垃圾检测已成为一个热研究问题。以前打击垃圾的尝试主要采用与元数据、用户行为或关联关系有关的特征。这些工程在理解和过滤垃圾信息运动方面取得了相当大的进展。然而,这一问题仍然远远没有完全解决。几乎所有拟议的特征都侧重于有限的观测到的属性或可解释的现象,使现有方法难以进一步改进。为了扩大解决垃圾检测领域垃圾问题和应对长期挑战(阶级不平衡和图不完全性)的愿景,我们建议重新尝试利用已签字的潜在因素来过滤欺诈活动。这一情景中多种在线应用的受垃圾污染的关系数据集由统一签署的网络加以解释。两种具有竞争力和高度不完全不完全不相同的潜在因素采矿模型是根据多种关系可能性估算(LFM-MRL)和签定的遥感实验室(MRM-M-M-S-S-Servial-Servical-Servical-Servical-Servical-deal-romocal-mogrational-mocal-mocal-mocal-mocal-mocal-mocal-mocal-mocal-mocal-mod-mod-modal-mod-mod-mod-mod-mod-modal-mod-modal-modal-mod-mod-modal-mod-la-modal-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-modal-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-modal-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
13+阅读 · 2021年10月22日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员