We develop a novel hybrid method for Bayesian network structure learning called partitioned hybrid greedy search (pHGS), composed of three distinct yet compatible new algorithms: Partitioned PC (pPC) accelerates skeleton learning via a divide-and-conquer strategy, $p$-value adjacency thresholding (PATH) effectively accomplishes parameter tuning with a single execution, and hybrid greedy initialization (HGI) maximally utilizes constraint-based information to obtain a high-scoring and well-performing initial graph for greedy search. We establish structure learning consistency of our algorithms in the large-sample limit, and empirically validate our methods individually and collectively through extensive numerical comparisons. The combined merits of pPC and PATH achieve significant computational reductions compared to the PC algorithm without sacrificing the accuracy of estimated structures, and our generally applicable HGI strategy reliably improves the estimation structural accuracy of popular hybrid algorithms with negligible additional computational expense. Our empirical results demonstrate the superior empirical performance of pHGS against many state-of-the-art structure learning algorithms.


翻译:我们为巴伊西亚网络结构的学习开发一种新型混合方法,称为分隔式混合贪婪搜索(pHGS),由三种不同而又兼容的新算法组成:分割式PC(PPC)通过分而治之战略加速骨干学习,美元价值相邻阈值(PATH)有效地完成了单项执行的参数调整,混合贪婪初始化(HGI)最大限度地利用基于限制的信息获得高分解和良好表现的初始图,用于贪婪搜索。我们建立了结构,在大抽样限度中学习我们的算法的一致性,并通过广泛的数字比较对方法进行个别和集体的经验验证。与个人算法相比,PPC(PPC)和PATH(PTH)的合并优点实现了显著的计算削减,而没有牺牲估计结构的准确性,我们普遍适用的HGI战略可靠地提高了流行混合算法的结构准确性,而额外的计算费用微不足道。我们的经验结果表明,在很多州级结构学习算法中,PHGS的高级经验表现。

0
下载
关闭预览

相关内容

【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度互学习-Deep Mutual Learning:三人行必有我师
深度学习大讲堂
7+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Dynamic Zoom-in Network 论文笔记
统计学习与视觉计算组
6+阅读 · 2018年7月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月14日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
13+阅读 · 2019年11月14日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关资讯
深度互学习-Deep Mutual Learning:三人行必有我师
深度学习大讲堂
7+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Dynamic Zoom-in Network 论文笔记
统计学习与视觉计算组
6+阅读 · 2018年7月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员