Among image classification, skip and densely-connection-based networks have dominated most leaderboards. Recently, from the successful development of multi-head attention in natural language processing, it is sure that now is a time of either using a Transformer-like model or hybrid CNNs with attention. However, the former need a tremendous resource to train, and the latter is in the perfect balance in this direction. In this work, to make CNNs handle global and local information, we proposed UPANets, which equips channel-wise attention with a hybrid skip-densely-connection structure. Also, the extreme-connection structure makes UPANets robust with a smoother loss landscape. In experiments, UPANets surpassed most well-known and widely-used SOTAs with an accuracy of 96.47% in Cifar-10, 80.29% in Cifar-100, and 67.67% in Tiny Imagenet. Most importantly, these performances have high parameters efficiency and only trained in one customer-based GPU. We share implementing code of UPANets in https://github.com/hanktseng131415go/UPANets.
翻译:在图像分类、跳板和密连网络中,大多数图像分类、跳板和密连网络占据了主导地位。最近,由于在自然语言处理中成功地发展了多头关注,人们可以肯定,现在是使用类似变换模式或混合型CNN并引起注意的时候。然而,前者需要巨大的培训资源,而后者在这方面则处于完美的平衡之中。在这项工作中,为了使CNN处理全球和地方信息,我们建议UPANetes将频道关注与混合跳过式连接结构相结合。此外,极端连接结构使UPANetes变得强大,其损失情况更加平滑。在实验中,UPANetes超越了最著名和广泛使用的SOTAs,准确率在Cifar-10为96.47%,在Cifar-100为80.29 %,在Tiny图像网为67.67%。最重要的是,这些表演具有高参数效率,只受过一个基于客户的GPUPU的培训。我们在https://github.com/hintsenge1315go/UPANets中分享UPANets实施UPANets代码。