By significant improvements in modern electrical systems, planning for unit commitment and power dispatching of them are two big concerns between the researchers. Short-term load forecasting plays a significant role in planning and dispatching them. In recent years, numerous works have been done on Short-term load forecasting. Having an accurate model for predicting the load can be beneficial for optimizing the electrical sources and protecting energy. Several models such as Artificial Intelligence and Statistics model have been used to improve the accuracy of load forecasting. Among the statistics models, time series models show a great performance. In this paper, an Autoregressive integrated moving average (SARIMA) - generalized autoregressive conditional heteroskedasticity (GARCH) model as a powerful tool for modeling the conditional mean and volatility of time series with the T-student Distribution is used to forecast electric load in short period of time. The attained model is compared with the ARIMA model with Normal Distribution. Finally, the effectiveness of the proposed approach is validated by applying real electric load data from the Electric Reliability Council of Texas (ERCOT). KEYWORDS: Electricity load, Forecasting, Econometrics Time Series Forecasting, SARIMA


翻译:通过对现代电力系统的重大改进,对单位承诺和电力发送的规划是研究人员们关注的两个重大问题。短期负载预测在规划和发送这些系统方面起着重要作用。近年来,在短期负载预测方面做了许多工作。拥有准确的负载预测模型可以有利于优化电源和保护能源。几种模型,如人工智能和统计模型,已经用来提高负载预测的准确性。在统计模型中,时间序列模型表现出了很高的性能。在本文中,自动递增综合移动平均(SARIMA)-普遍自动递增性有条件超重性(GARCHH)模型作为模拟条件平均平均平均和时间序列波动的有力工具,与T-学生分布模型一起用于短期预测电荷量的准确性模型。已经实现的模型与ARIMA模型和正常分布进行了比较。最后,通过应用德克萨斯电力可靠性理事会(ERCOT)提供的实际电荷负荷数据,验证了拟议方法的有效性。KEYWERRDCS:电力负荷、预报、EARIMA、EARIMA 时间序列。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
61+阅读 · 2020年3月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员