Federated learning (FL) enables devices in mobile edge computing (MEC) to collaboratively train a shared model without uploading the local data. Gradient compression may be applied to FL to alleviate the communication overheads but current FL with gradient compression still faces great challenges. To deploy green MEC, we propose FedGreen, which enhances the original FL with fine-grained gradient compression to efficiently control the total energy consumption of the devices. Specifically, we introduce the relevant operations including device-side gradient reduction and server-side element-wise aggregation to facilitate the gradient compression in FL. According to a public dataset, we investigate the contributions of the compressed local gradients with respect to different compression ratios. After that, we formulate and tackle a learning accuracy-energy efficiency tradeoff problem where the optimal compression ratio and computing frequency are derived for each device. Experiments results demonstrate that given the 80% test accuracy requirement, compared with the baseline schemes, FedGreen reduces at least 32% of the total energy consumption of the devices.
翻译:联邦学习( FL) 使得移动边缘计算中的设备能够在不上传本地数据的情况下合作训练共享模型。 可能对 FL 应用渐变压缩以缓解通信管理费用, 但目前使用梯度压缩的 FL 仍面临巨大的挑战 。 要部署绿色 MEC, 我们提议 Fed Green, 以细微的梯度压缩增强原始 FL, 以有效控制设备的总能源消耗。 具体地说, 我们引入了相关操作, 包括设备边梯度减少和服务器边端元素聚合, 以方便FL 的梯度压缩。 根据公共数据集, 我们调查压缩本地梯度对不同压缩率的贡献。 之后, 我们制定并解决学习精度- 节能权衡问题, 在每个设备中得出最佳压缩率和计算频率。 实验结果显示, 与基线计划相比, Fed Green 测试精度要求为80%, 将设备总能源消耗量至少减少32% 。