Guessing Random Additive Noise Decoding (GRAND) is a code-agnostic decoding technique for short-length and high-rate channel codes. GRAND tries to guess the channel noise by generating test error patterns (TEPs), and the sequence of the TEPs is the main difference between different GRAND variants. In this work, we extend the application of GRAND to multipath frequency non-selective Rayleigh fading communication channels, and we refer to this GRAND variant as Fading-GRAND. The proposed Fading-GRAND adapts its TEP generation to the fading conditions of the underlying communication channel, outperforming traditional channel code decoders in scenarios with $L$ spatial diversity branches as well as scenarios with no diversity. Numerical simulation results show that the Fading-GRAND outperforms the traditional Berlekamp-Massey (B-M) decoder for decoding BCH code $(127,106)$ and BCH code $(127,113)$ by $\mathbf{0.5\sim6.5}$ dB at a target FER of $10^{-7}$. Similarly, Fading-GRAND outperforms GRANDAB, the hard-input variation of GRAND, by $0.2\sim8$ dB at a target FER of $10^{-7}$ with CRC $(128,104)$ code and RLC $(128,104)$. Furthermore the average complexity of Fading-GRAND, at $\frac{E_b}{N_0}$ corresponding to target FER of $10^{-7}$, is $\frac{1}{2}\times\sim \frac{1}{46}\times$ the complexity of GRANDAB.


翻译:GRAND 试图通过产生测试错误模式(TEPs)来猜测频道的噪音,而TEP的顺序是不同GRAND变体之间的主要差异。在这项工作中,我们将GRAND的应用扩大到多频非选择性的雷利淡化通信频道,我们将GRAND变种称为Fading-GRAND。拟议的FAND 将其TEP 生成适应基础通信频道的淡化条件,在使用美元空间多样性分支和没有多样性的假想中,比传统频道代码解码方格(TEPs ) 。我们把GRAND 应用到多频非选择性雷利淡化的通信渠道,我们把GRAND 应用到GRAND 代码(127,106美元) 和B代码(127,113美元) 调整到基通信频道的淡化条件,在使用美元空间多样性的假设情景中比传统的频道代码(0.50,6.5美元) 传统频道解码。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员