项目名称: 混凝土反应动力学和结构形成动力学的研究及计算机模拟
项目编号: No.51478200
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 建筑环境与结构工程学科
项目作者: 魏小胜
作者单位: 华中科技大学
项目金额: 80万元
中文摘要: 本课题以电阻率法为主要测试手段、以微量热法等为辅助手段研究水泥石的反应动力学和结构形成动力学,系统地探索水灰比等因素对水泥基材料成核结晶与晶体生长阶段(NG),相边界反应阶段(I)和扩散控制阶段(D)的影响规律。按水化阶段用不同的拟合方法分别建立电阻率、水化热随时间遵循的演变规律方程,探讨相应参数的物理意义,并建立由电阻率法获得的结构形成动力学参数和水化热获得的反应动力学参数间的关系。通过改变骨料掺量、粒径和化学外加剂,探讨混凝土电阻率与水泥浆基体、骨料、界面三相之间的导电模型,达到计算混凝土中水泥基材的水化度及其动力学参数的目的,并建立混凝土动力学参数与混凝土力学性能之间的关系;提出以电阻率确定混凝土水化热和水化度的新方法。最后,基于电阻率法获得的动力学参数及特征点时间进行水泥基材料水化过程建模与仿真,并对水泥基材料的性能进行预测。
中文关键词: 反应动力学;结构形成动力学;电阻率;水化热;计算机模拟
英文摘要: The electrical resistivity method for detecting the bulk resistivity and the calorimetry for measuring the heat evolution are applied to study the reaction kinetics and structure formation kinetics of cement pastes. The factors such as water cement ratio, are considered to systematically investigate the trends during the nucleation and growth period (NG), phase-boundary period (I) and diffusion-controlled period (D), respectively. Different fitting lines for the different periods are obtained from electrical resistivity curves and heat evolution curves. The kinetics parameters will be derived, and the physical meanings will be analyzed. The kinetics parameter relation will be built between the reaction kinetics and the structural formation kinetics. By changing the aggregate volume, aggregate size and chemical admixtures, the conductive modeling of concrete will be investigated by the relationship between the electrical resistivity of concrete and the matrix, the aggregate and the interfacial transition zone. The new alternative method based on electrical resistivity is proposed to estimate the hydration heat and hydration degree. Finally, the electrical resistivity measurement offers input datum of the kinetics and the period time at the characteristics points for simulation, which enables visualization of the microstructure evolution and estimates the properties of cement-based materials.
英文关键词: Reaction kinetics;structure formation kinetics;electrical resistivity;hydration heat;computer simulation