Efficient deep learning-based approaches have achieved remarkable performance in single image super-resolution. However, recent studies on efficient super-resolution have mainly focused on reducing the number of parameters and floating-point operations through various network designs. Although these methods can decrease the number of parameters and floating-point operations, they may not necessarily reduce actual running time. To address this issue, we propose a novel multi-stage lightweight network boosting method, which can enable lightweight networks to achieve outstanding performance. Specifically, we leverage enhanced high-resolution output as additional supervision to improve the learning ability of lightweight student networks. Upon convergence of the student network, we further simplify our network structure to a more lightweight level using reparameterization techniques and iterative network pruning. Meanwhile, we adopt an effective lightweight network training strategy that combines multi-anchor distillation and progressive learning, enabling the lightweight network to achieve outstanding performance. Ultimately, our proposed method achieves the fastest inference time among all participants in the NTIRE 2023 efficient super-resolution challenge while maintaining competitive super-resolution performance. Additionally, extensive experiments are conducted to demonstrate the effectiveness of the proposed components. The results show that our approach achieves comparable performance in representative dataset DIV2K, both qualitatively and quantitatively, with faster inference and fewer number of network parameters.


翻译:高效的深度学习方法已经在单张图像超分辨率上取得了显着的性能。然而,最近针对高效的超分辨率的研究主要集中在通过各种网络设计减少参数数量和浮点操作的方法。尽管这些方法可以减少参数数量和浮点操作,但不一定能减少实际运行时间。为解决这个问题,我们提出了一种新的多阶段轻量级网络升级方法,可以使轻量级网络实现出色的性能。具体而言,我们利用增强的高分辨率输出作为额外的监督,提高轻量级学生网络的学习能力。在学生网络收敛后,我们采用重参数化技术和迭代网络剪枝进一步简化网络结构,同时采用有效的轻量级网络训练策略,结合多锚点蒸馏和逐步学习,使轻量级网络实现出色的性能。最终,我们提出的方法在NTIRE 2023高效超分辨率挑战赛中的推断时间是所有参与者中最快的,同时保持了具有竞争力的超分辨率性能。此外,进行了广泛的实验来证明所提出的组件的有效性。结果表明,我们的方法在代表性数据集DIV2K中实现了可比较的性能,无论是从定性还是定量方面考虑,都具有更快的推断速度和更少的网络参数数量。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
BERT 瘦身之路:Distillation,Quantization,Pruning
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
相关资讯
BERT 瘦身之路:Distillation,Quantization,Pruning
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员