项目名称: 最小化图像描述子敏感度的大规模图像索引及检索方法
项目编号: No.61272201
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 吴永贤
作者单位: 华南理工大学
项目金额: 80万元
中文摘要: 随着智能手机等摄像设备的迅速普及,互联网上的图像数量以几何级数增长。对海量图像进行大规模图像检索是网上商业活动、日常查询或医疗、交通等各行业信息检索中极为重要的应用。海量图像首先须通过哈希来建立索引以降低检索时间,与查询图像哈希编码相似的便会被看成相似的图像子集,然后使用相似度度量对该子集排序后相似度最高的少部分图像便会被返回给用户。图像的色差等变化会改变图像描述子的值并影响哈希及相似度,我们定义这个影响为敏感度。本项目提出一个最小化描述子特征敏感度框架来同时研究索引和检索问题。首先研究最小化量化误差敏感度的哈希算法以增加相似图像被划分到相同哈希码的机会,然后推广成层次哈希为哈希码差一位的图像提供不同的相似度,再研究最小化敏感度的相似度度量学习算法提升检索准确率。对哈希后的图像库学习相似度来优化初始检索效果,然后基于用户反馈和敏感度学习进一步提升检索准确率。最后整合研究结果为一个原型系统。
中文关键词: 图像检索;大规模数据;哈希;相似度度量学习;
英文摘要: With the rapid development of smart phones and other digital equipments, the number of images being stored on the Internet grows exponentially. Large scale image retrieval is to find a group of relevant or similar images for a given query image. This is vital to the utilization of this huge volume of image resources on the Internet, e.g. goods finding in e-retailing, people finding and other information retrieval problems. Owing to the large volume of images, indexing based on hashing is required to reduce the time for query. The set of images with the same or similar hash code (e.g. hamming distance = 1) of the query image's is regarded as relevant images. Then, top few relevant images ranked by a similarity measure are returned to user. We propose to study both indexing and retrieval in a unified framework of minimization of descriptor sensitivity. Changes in images, e.g. color difference, will change the values of image descriptor and will affect the quantization of hashing and similarity measure. We define these effects as the descriptor sensitivity. Current methods ignore the effects of small perturbations to image descriptors with respect to the indexing and similarity results. We define these effects as the sensitivity of indexing and similarity, respectively. Minimization of these sensitivities enhances
英文关键词: Image Retrieval;Large Scale Data;Hashing;Similarity Measure Learning;