Cross-domain recommendation (CDR) can help customers find more satisfying items in different domains. Existing CDR models mainly use common users or mapping functions as bridges between domains but have very limited exploration in fully utilizing extra knowledge across domains. In this paper, we propose to incorporate the knowledge graph (KG) for CDR, which enables items in different domains to share knowledge. To this end, we first construct a new dataset AmazonKG4CDR from the Freebase KG and a subset (two domain pairs: movies-music, movie-book) of Amazon Review Data. This new dataset facilitates linking knowledge to bridge within- and cross-domain items for CDR. Then we propose a new framework, KG-aware Neural Collective Matrix Factorization (KG-NeuCMF), leveraging KG to enrich item representations. It first learns item embeddings by graph convolutional autoencoder to capture both domain-specific and domain-general knowledge from adjacent and higher-order neighbours in the KG. Then, we maximize the mutual information between item embeddings learned from the KG and user-item matrix to establish cross-domain relationships for better CDR. Finally, we conduct extensive experiments on the newly constructed dataset and demonstrate that our model significantly outperforms the best-performing baselines.
翻译:跨部门建议(CDR)可以帮助客户在不同领域找到更令人满意的项目。现有的CDR模型主要使用共同用户或绘图功能作为领域之间的桥梁,但在充分利用不同领域的额外知识方面探索非常有限。在本文件中,我们提议为CDR纳入知识图(KG),使不同领域的项目能够分享知识。为此,我们首先从Freebase KG和亚马逊评论数据的一个子集(两个域对:电影、电影书)建立一个新的亚马逊KG4CDR数据集(两个域对)。这个新的数据集有助于将知识与CDR内部和跨域项目的桥梁连接起来。然后我们提出一个新的框架,即KG-aware神经联合矩阵集成(KG-NeuCMF),利用KGG来丰富项目表示。它首先通过图形革命自动编码来学习项目嵌入的图集,从KGG的相邻和较高级邻居那里获取特定域和一般知识。然后,我们尽量利用从KGG和用户项目嵌入的跨域项目和跨域项项项项项目连接连接连接到C-项的连接到C-项矩阵的桥梁项目。然后,我们提出一个新的框架集集集的模型,以便最终展示我们所建的跨基底的模型。