We develop a combinatorial theory of vector bundles with connection that is natural with respect to appropriate mappings of the base space. The base space is a simplicial complex, the main objects defined are discrete vector bundle valued cochains and the main operators we develop are a discrete exterior covariant derivative and a combinatorial wedge product. Key properties of these operators are demonstrated and it is shown that they are natural with respect to the mappings referred to above. We also formulate a well-behaved definition of metric compatible discrete connections. A characterization is given for when a discrete vector bundle with connection is trivializable or has a trivial lower rank subbundle. This machinery is used to define discrete curvature as linear maps and we show that our formulation satisfies a discrete Bianchi identity. Recently an alternative framework for discrete vector bundles with connection has been given by Christiansen and Hu. We show that our framework reproduces and extends theirs when we apply our constructions on a subdivision of the base simplicial complex.
翻译:暂无翻译