In this work, we characterize two data piling phenomenon for a high-dimensional binary classification problem with heterogeneous covariance models. The data piling refers to the phenomenon where projections of the training data onto a direction vector have exactly two distinct values, one for each class. This first data piling phenomenon occurs for any data when the dimension $p$ is larger than the sample size $n$. We show that the second data piling phenomenon, which refers to a data piling of independent test data, can occur in an asymptotic context where $p$ grows while $n$ is fixed. We further show that a second maximal data piling direction, which gives an asymptotic maximal distance between the two piles of independent test data, can be obtained by projecting the first maximal data piling direction onto the nullspace of the common leading eigenspace. This observation provides a theoretical explanation for the phenomenon where the optimal ridge parameter can be negative in the context of high-dimensional linear classification. Based on the second data piling phenomenon, we propose various linear classification rules which ensure perfect classification of high-dimension low-sample-size data under generalized heterogeneous spiked covariance models.
翻译:在这项工作中,我们用多种共差模型为高维的二进制分类问题确定两个数据堆积现象。 数据堆积是指向方向矢量上的培训数据预测有两个截然不同的值, 每类一个。 第一个数据堆积现象发生在任何数据中, 当维维维值$p$大于样本大小时。 我们显示第二个数据堆积现象, 指独立测试数据的一个数据堆积数据, 可能发生在一个零星环境中, 即美元增长而美元固定。 我们进一步显示, 第二个最大数据堆积方向, 给两个独立测试数据堆之间带来一个无同步的最大距离, 可以通过预测第一个最大数据堆积方向与共同导导出电子空间的空格。 我们的观察为在高度线性线性分类中, 最佳脊柱参数可能为负数的现象提供了理论解释。 基于第二个数据堆积现象, 我们提出各种线性分类规则, 以确保高二进制的低等同度数据质化模型的完美分类。