In this work, we characterize two data piling phenomenon for a high-dimensional binary classification problem with heterogeneous covariance models. The data piling refers to the phenomenon where projections of the training data onto a direction vector have exactly two distinct values, one for each class. This first data piling phenomenon occurs for any data when the dimension $p$ is larger than the sample size $n$. We show that the second data piling phenomenon, which refers to a data piling of independent test data, can occur in an asymptotic context where $p$ grows while $n$ is fixed. We further show that a second maximal data piling direction, which gives an asymptotic maximal distance between the two piles of independent test data, can be obtained by projecting the first maximal data piling direction onto the nullspace of the common leading eigenspace. This observation provides a theoretical explanation for the phenomenon where the optimal ridge parameter can be negative in the context of high-dimensional linear classification. Based on the second data piling phenomenon, we propose various linear classification rules which ensure perfect classification of high-dimension low-sample-size data under generalized heterogeneous spiked covariance models.


翻译:在这项工作中,我们用多种共差模型为高维的二进制分类问题确定两个数据堆积现象。 数据堆积是指向方向矢量上的培训数据预测有两个截然不同的值, 每类一个。 第一个数据堆积现象发生在任何数据中, 当维维维值$p$大于样本大小时。 我们显示第二个数据堆积现象, 指独立测试数据的一个数据堆积数据, 可能发生在一个零星环境中, 即美元增长而美元固定。 我们进一步显示, 第二个最大数据堆积方向, 给两个独立测试数据堆之间带来一个无同步的最大距离, 可以通过预测第一个最大数据堆积方向与共同导导出电子空间的空格。 我们的观察为在高度线性线性分类中, 最佳脊柱参数可能为负数的现象提供了理论解释。 基于第二个数据堆积现象, 我们提出各种线性分类规则, 以确保高二进制的低等同度数据质化模型的完美分类。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Twitter大佬在线讲座:GNN through the Lens of Curvature
图与推荐
1+阅读 · 2022年4月12日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
Twitter大佬在线讲座:GNN through the Lens of Curvature
图与推荐
1+阅读 · 2022年4月12日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员