In this paper, we study the problem of zero-shot sim-to-real when the task requires both highly precise control with sub-millimetre error tolerance, and wide task space generalisation. Our framework involves a coarse-to-fine controller, where trajectories begin with classical motion planning using ICP-based pose estimation, and transition to a learned end-to-end controller which maps images to actions and is trained in simulation with domain randomisation. In this way, we achieve precise control whilst also generalising the controller across wide task spaces, and keeping the robustness of vision-based, end-to-end control. Real-world experiments on a range of different tasks show that, by exploiting the best of both worlds, our framework significantly outperforms purely motion planning methods, and purely learning-based methods. Furthermore, we answer a range of questions on best practices for precise sim-to-real transfer, such as how different image sensor modalities and image feature representations perform.
翻译:在本文中,当任务要求以亚毫米误差度进行高度精确的控制,以及需要广泛的任务空泛化时,我们研究零射模拟到现实的问题。我们的框架包括粗略到直线控制器,轨道从古典运动规划开始,使用基于国际比较方案的造型估计,向学习的端到端控制器过渡,将图像映射为行动,并经过模拟域随机化的培训。这样,我们实现了精确控制,同时将控制器分布在宽广的任务空间,并保持基于视觉的、端到端的控制的稳健性。关于一系列不同任务的现实世界实验显示,通过利用两个世界的最好功能,我们的框架大大超越了纯粹的运动规划方法和纯粹的学习方法。此外,我们回答了一系列关于精确的模拟到真实传输的最佳做法的问题,例如不同的图像传感器模式和图像特征描述是如何表现的。