Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder involving motor neuron degeneration. Significant research has begun to establish brain magnetic resonance imaging (MRI) as a potential biomarker to diagnose and monitor the state of the disease. Deep learning has turned into a prominent class of machine learning programs in computer vision and has been successfully employed to solve diverse medical image analysis tasks. However, deep learning-based methods applied to neuroimaging have not achieved superior performance in ALS patients classification from healthy controls due to having insignificant structural changes correlated with pathological features. Therefore, the critical challenge in deep models is to determine useful discriminative features with limited training data. By exploiting the long-range relationship of image features, this study introduces a framework named SF2Former that leverages vision transformer architecture's power to distinguish the ALS subjects from the control group. To further improve the network's performance, spatial and frequency domain information are combined because MRI scans are captured in the frequency domain before being converted to the spatial domain. The proposed framework is trained with a set of consecutive coronal 2D slices, which uses the pre-trained weights on ImageNet by leveraging transfer learning. Finally, a majority voting scheme has been employed to those coronal slices of a particular subject to produce the final classification decision. Our proposed architecture has been thoroughly assessed with multi-modal neuroimaging data using two well-organized versions of the Canadian ALS Neuroimaging Consortium (CALSNIC) multi-center datasets. The experimental results demonstrate the superiority of our proposed strategy in terms of classification accuracy compared with several popular deep learning-based techniques.


翻译:脑部磁共振成像(MRI)是诊断和监测该疾病状态的潜在生物标志。深层学习已变成计算机视觉中一个突出的机器学习程序类别,并被成功地用于解决多种医学图像分析任务。然而,用于神经成像的深层次学习方法在ALS病人的健康控制分类中并没有取得优异性,因为与病理特征相关的结构变化微不足道。因此,深层模型的关键挑战在于确定有用的区分特征,而培训数据则有限。通过利用图像特征的远程关系来诊断和监测该疾病的状况。深层学习已经演变成计算机视觉变异结构的突出的机器学习程序类别,并被成功地用于解决多种医学图像分析任务。为了进一步改善网络的性能,将空间和频率域信息结合起来,因为在转换为空间域之前,在频率域中采集了MRI扫描。拟议的框架在一系列连续的神经级变异性结构特征特征特征特征特征和多级精细精度的多级数据分析功能上,通过使用CRioronalalalal-de 预选的CLisalalalalal-alal-alalalalalalalalal legal imalalal lexal le legal legal,在最后使用了一种Cregradu动了一种Calalalalalalalal-alalalal-ligalalal legal leglegalma 。在使用了一种最后的预算法,在使用了一种特定的缩缩算法,在使用了一种特定的缩算法,在使用了一种特定的缩略算法,在使用了一种特定的缩略算法前的缩算法,在前的精度上,在使用了一种特定的缩算取了一种特定的缩图的精度上进行了我们的精度上,在最后的精度上,在使用了一种精度上进行中,在使用了一种精度上,在使用了一种算法的精度学前的精度学前的精度上进行上进行了中,在使用了一种算法的精度变数级的精度上,在预的精度上,在将数据学前的精度上,在预的精度学学的精度学学学学的精度上学习了一种

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年9月1日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员