The autoregressive moving average (ARMA) model is a classical, and arguably one of the most studied approaches to model time series data. It has compelling theoretical properties and is widely used among practitioners. More recent deep learning approaches popularize recurrent neural networks (RNNs) and, in particular, long short-term memory (LSTM) cells that have become one of the best performing and most common building blocks in neural time series modeling. While advantageous for time series data or sequences with long-term effects, complex RNN cells are not always a must and can sometimes even be inferior to simpler recurrent approaches. In this work, we introduce the ARMA cell, a simpler, modular, and effective approach for time series modeling in neural networks. This cell can be used in any neural network architecture where recurrent structures are present and naturally handles multivariate time series using vector autoregression. We also introduce the ConvARMA cell as a natural successor for spatially-correlated time series. Our experiments show that the proposed methodology is competitive with popular alternatives in terms of performance while being more robust and compelling due to its simplicity.


翻译:自动递减移动平均(ARMA)模型是一种古典模式,可以说是模拟时间序列数据最受研究的方法之一。它具有令人信服的理论特性,在实践者中广泛使用。最近更深层次的学习方法普及了经常神经网络(RNN),特别是长期短期内存(LSTM)细胞,这些细胞已成为神经时间序列模型中最有性能和最常见的构件之一。对于具有长期影响的时间序列数据或序列来说,复杂的RNN细胞并不总是必须而且有时甚至可能比更简单的经常性方法要低。在这项工作中,我们引入ARMA细胞,这是在神经网络中进行时间序列建模的更简单、模块化和有效的方法。该细胞可以在任何神经网络结构中使用,在这些结构中,经常结构是使用矢量自动反射来自然处理多变时间序列。我们还引入了CONARMA细胞,作为空间-气候相关时间序列的自然继承物。我们的实验表明,拟议的方法在性能方面与流行的替代物更有竞争力,同时由于其简单性更强和具有说服力。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月18日
A Variational Perspective on Generative Flow Networks
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月13日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员