Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event and the clinical decision of treatment planning. To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites. This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features. In this paper, we propose a novel domain adaptation (DA) method with two components to address these problems. The first component is a stochastic class-balanced boosting sampling strategy that overcomes the imbalanced learning problem and improves the classification performance on poorly-predicted classes. The second component is a representation learning that guarantees three properties: 1) domain-transferability by prototype triplet loss, 2) discriminant by conditional maximum mean discrepancy loss, and 3) completeness by multi-view reconstruction loss. Particularly, we propose a domain translator and align the heterogeneous data to the estimated class prototypes (i.e., class centers) in a hyper-sphere manifold. Experiments on cross-site severity assessment of COVID-19 from CT images show that the proposed method can effectively tackle the imbalanced learning problem and outperform recent DA approaches.


翻译:2019年科罗纳病毒(COVID-19)的早期和准确严重程度评估(COVID-19)基于计算断层成像(CT)图像的Corona病毒(COVID-19)的早期和准确严重程度评估,为评估特护单位事件和临床治疗规划的临床决定提供了极大的帮助。为了增加标签数据并提高分类模型的普及能力,有必要从多个地点汇总数据。这项任务面临若干挑战,包括轻度和严重感染之间的等级不平衡,不同地点之间的地区分布差异,以及多种特征的存在。在本文件中,我们建议采用一种新的领域适应(DA)方法,其中有两个组成部分来解决这些问题。第一个组成部分是随机平衡的等级增强采样战略,克服了不均衡的学习问题,并改进了低度类的分类工作表现。第二个组成部分是代表学习,保证三种特性:(1) 原型三重损失的域可转移性;(2) 有条件的最大偏差损失是不同地点的地域分布差异;以及3 多重重建损失的完整性。特别是,我们提议采用一种域翻译,使混合数据与估计的等级原型(elex Centcent Cent Centcre cent central crealal-deal sleglegal slegal deglegleglegleglegleglegal sleglegal slegal sleglegis the the the the the degal degal degal degal degal degal degal degislislislgal degal degal degal degal degaltiald lagal degald legald 。D 。DAd lagald 。D 。 。 。 。 。 。 。 能够从最新的DAgal sal 。 。 。 exd exd exal exal 。 。 。 。 ex 。 。 exal ex ex ex exal ex ex ex ex ex 。 ex ex ex ex ex ex ex exaldaldaldaldal 。实验制制制制制制制制制制制制制制制制

0
下载
关闭预览

相关内容

专知会员服务
63+阅读 · 2021年1月10日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
6+阅读 · 2018年12月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Coresets for Time Series Clustering
Arxiv
0+阅读 · 2021年10月28日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
6+阅读 · 2018年12月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员