Deep learning (DL)-based channel state information (CSI) feedback has shown promising potential to improve spectrum efficiency in massive MIMO systems. However, practical DL approaches require a sizeable CSI dataset for each scenario, and require large storage for multiple learned models. To overcome this costly barrier, we develop a solution for efficient training and deployment enhancement of DL-based CSI feedback by exploiting a lightweight translation model to cope with new CSI environments and by proposing novel dataset augmentation based on domain knowledge. Specifically, we first develop a deep unfolding CSI feedback network, SPTM2-ISTANet+, which employs spherical normalization to address the challenge of path loss variation. We also introduce an integration of a trainable measurement matrix and residual CSI recovery blocks within SPTM2-ISTANet+ to improve efficiency and accuracy. Using SPTM2-ISTANet+ as the anchor feedback model, we propose an efficient scenario-adaptive CSI feedback architecture. This new CSI-TransNet exploits a plug-in module for CSI translation consisting of a sparsity aligning function and lightweight DL module to reuse pretrained models in unseen environments. To work with small datasets, we propose a lightweight and general augmentation strategy based on domain knowledge. Test results demonstrate the efficacy and efficiency of the proposed solution for accurate CSI feedback given limited measurements for unseen CSI environments.
翻译:深入学习(DL)基于深度学习(CSI)的渠道状态信息的反馈表明,在大型MIMO系统中提高频谱效率方面,有大潜力大有潜力;然而,实用的DL方法要求每个情景都有一个庞大的 CSI数据集,并需要大量储存多学模型。为了克服这一代价高昂的障碍,我们开发了高效培训和部署基于DL的 CSI反馈的方法,利用轻量化翻译模式应对新的 CSI环境,并根据领域知识提出新的增强数据集的新模式。具体地说,我们首先开发了一个深入发展的 CSI反馈网络,即 COPM2-ISSTANet+, 该网络利用球质正常化来应对路径损失变异的挑战。我们还将一个可培训的CSI测量矩阵和残余 CSI 回收区块整合起来,以提高效率和准确性。我们利用HSPM2-ISTANet+ 的定位模型来应对新的CSI 情景适应性 CSI 反馈结构。这个新的 CSI 透明网络利用一个插入模块,包括一个深度校准功能和轻量 DL模块,用于在无形环境中再利用精确的CSI 战略。我们提出一个基于测试的CSyal-Sylegyal 工作。