With the advancement of technologies, market wearables are becoming increasingly popular with a range of services, including providing access to bank accounts, accessing cars, monitoring patients remotely, among several others. However, often these wearables collect various sensitive personal information of a user with no to limited authentication, e.g., knowledge-based external authentication techniques, such as PINs. While most of these external authentication techniques suffer from multiple limitations, including recall burden, human errors, or biases, researchers have started using various physiological and behavioral data, such as gait and heart rate, collected by the wearables to authenticate a wearable user implicitly with a limited accuracy due to sensing and computing constraints of wearables. In this work, we explore the usefulness of blood oxygen saturation SpO2 values collected from the Oximeter device to distinguish a user from others. From a cohort of 25 subjects, we find that 92% of the cases SpO2 can distinguish pairs of users. From detailed modeling and performance analysis, we observe that while SpO2 alone can obtain an average accuracy of 0.69 and F1 score of 0.69, the addition of heart rate (HR) can improve the average identification accuracy by 15% and F1 score by 13%. These results show promise in using SpO2 along with other biometrics to develop implicit continuous authentications for wearables.


翻译:随着技术的进步,市场磨损随着各种服务,包括提供银行账户、汽车、远程监测病人等等,市场磨损越来越受欢迎。然而,这些磨损通常收集没有有限认证的用户的各种敏感个人信息,例如知识基础外部认证技术,例如PINs。虽然这些外部认证技术大多受到多种限制,包括召回负担、人为错误或偏见,研究人员已开始使用各种生理和行为数据,例如游戏率和心率等,由磨损者收集,以认证一个因感知和计算损耗损限制而具有有限精度的可磨损用户。在这项工作中,我们探讨了从Oximter设备收集的血液氧饱和 SpO2 值以区分用户与其他人的区别。从25个学科组中,我们发现92%的SpO2案例可以区分对用户。从详细的模型和业绩分析中,我们观察到,只有SpO2才能获得平均0.69分和F1分的准确度,而由于感测和计算可磨损限制,因此增加心脏率(HR2)和SBIS2分数的15个平均识别结果,通过不断显示F1分数。

0
下载
关闭预览

相关内容

可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能,可穿戴设备将会对我们的生活、感知带来很大的转变。
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
9+阅读 · 2017年10月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Rapid Customization for Event Extraction
Arxiv
7+阅读 · 2018年9月20日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
9+阅读 · 2017年10月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员