For robots navigating using only a camera, illumination changes in indoor environments can cause re-localization failures during autonomous navigation. In this paper, we present a multi-session visual SLAM approach to create a map made of multiple variations of the same locations in different illumination conditions. The multi-session map can then be used at any hour of the day for improved re-localization capability. The approach presented is independent of the visual features used, and this is demonstrated by comparing re-localization performance between multi-session maps created using the RTAB-Map library with SURF, SIFT, BRIEF, BRISK, KAZE, DAISY and SuperPoint visual features. The approach is tested on six mapping and six localization sessions recorded at 30 minute intervals during sunset using a Google Tango phone in a real apartment.
翻译:对于仅使用相机航行的机器人而言,室内环境的照明变化可能会在自主导航期间造成重新定位失败。在本文件中,我们提出了一个多部分直观SLM方法,用于绘制在不同照明条件下同一地点多种变异的地图。然后,多片地图可以在一天的任何时候用于改善重新定位能力。所展示的方法与所使用的视觉特征无关,通过将使用RTAB-Map图书馆制作的多片地图与SURF、SIFT、BRIEF、BRIK、KAZE、DAISY和SuperPoint视觉特征之间的重新定位性能比较来证明这一点。该方法在日落期间用谷歌Tango手机在真正的公寓里每30分钟记录6次绘图和6次本地化会议上进行测试。