Exploration of unknown environments is a fundamental problem in robotics and an essential component in numerous applications of autonomous systems. A major challenge in exploring unknown environments is that the robot has to plan with the limited information available at each time step. While most current approaches rely on heuristics and assumption to plan paths based on these partial observations, we instead propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable exploration mapping and planning. Our approach, SC-Explorer, combines scene completion using a novel incremental fusion mechanism and a newly proposed hierarchical multi-layer mapping approach, to guarantee safety and efficiency of the robot. We further present an informative path planning method, leveraging the capabilities of our mapping approach and a novel scene-completion-aware information gain. While our method is generally applicable, we evaluate it in the use case of a Micro Aerial Vehicle (MAV). We thoroughly study each component in high-fidelity simulation experiments using only mobile hardware, and show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy. Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%. We make our methods available as open-source.
翻译:探索未知环境是机器人的一个基本问题,也是自主系统众多应用中的一个基本组成部分。探索未知环境的一个主要挑战在于机器人必须用每个时间步骤可获得的有限信息进行规划。虽然大多数当前方法依靠超自然学和假设来根据这些部分观测规划路径,但我们却提出了一种新的方法,通过利用三维场景的完成来利用智能、安全和可解释的勘探绘图和规划,将深度学习纳入探索。我们的方法SC-Extraler,即使用新的递增聚合机制和新提议的多层级绘图方法,将场景完成结合起来,以保证机器人的安全和效率。我们进一步提出信息化路径规划方法,利用我们的绘图方法的能力和新的场景完成信息收益。虽然我们的方法一般适用,但我们在使用三维现场完成技术时,对探索进行新的整合,利用移动硬件进行高密度模拟实验,并表明我们的方法可以比基线加快73%的环境覆盖速度,只有最低限度的地图精确度。我们进一步展示了一条信息化路径,即使将现场完成方法与35号用于最终的机器人测量方法相比,我们也可以选择采用更快速的机器人测量方法。我们也可以选择了最终的路径。我们选择了使用的方法。我们使用的方法来选择了更快速的机器人测量方法。