Facial expressions convey massive information and play a crucial role in emotional expression. Deep neural network (DNN) accompanied by deep metric learning (DML) techniques boost the discriminative ability of the model in facial expression recognition (FER) applications. DNN, equipped with only classification loss functions such as Cross-Entropy cannot compact intra-class feature variation or separate inter-class feature distance as well as when it gets fortified by a DML supporting loss item. The triplet center loss (TCL) function is applied on all dimensions of the sample's embedding in the embedding space. In our work, we developed three strategies: fully-synthesized, semi-synthesized, and prediction-based negative sample selection strategies. To achieve better results, we introduce a selective attention module that provides a combination of pixel-wise and element-wise attention coefficients using high-semantic deep features of input samples. We evaluated the proposed method on the RAF-DB, a highly imbalanced dataset. The experimental results reveal significant improvements in comparison to the baseline for all three negative sample selection strategies.
翻译:深神经网络(DNN)加上深度测量学习(DML)技术,提高了面部表达识别(FER)应用模型的区别性能力。DNN,仅具备Cross-Entropy等分类损失功能,不能压缩类内特征变异或单独分类特征距离,以及当它被一个DML支持损失的项目加固时,不能进行分流;三重中心损失(TCL)功能适用于样本嵌入嵌入空间的所有层面。在我们的工作中,我们制定了三个战略:完全合成、半合成和基于预测的负面样本选择战略。为了取得更好的结果,我们引入了选择性关注模块,采用高分辨率深度输入样本的分流和分元素注意系数组合。我们评估了RAF-DB这一高度不平衡的数据集的拟议方法。实验结果显示,与所有三种负抽样选择战略的基准相比,在显著改进。