This paper presents a white-box intention-aware decision-making for the handling of interactions between a pedestrian and an automated vehicle (AV) in an unsignalized street crossing scenario. Moreover, a design framework has been developed, which enables automated parameterization of the decision-making. This decision-making is designed in such a manner that it can understand pedestrians in urban traffic and can react accordingly to their intentions. That way, a human-like response to the actions of the pedestrian is ensured, leading to a higher acceptance of AVs. The core notion of this paper is that the intention prediction of the pedestrian to cross the street and decision-making are divided into two subsystems. On the one hand, the intention detection is a data-driven, black-box model. Thus, it can model the complex behavior of the pedestrians. On the other hand, the decision-making is a white-box model to ensure traceability and to enable a rapid verification and validation of AVs. This white-box decision-making provides human-like behavior and a guaranteed prevention of deadlocks. An additional benefit is that the proposed decision-making requires low computational resources only enabling real world usage. The automated parameterization uses a particle swarm optimization and compares two different models of the pedestrian: The social force model and the Markov decision process model. Consequently, a rapid design of the decision-making is possible and different pedestrian behaviors can be taken into account. The results reinforce the applicability of the proposed intention-aware decision-making.


翻译:本文提出了一种白盒认知驱动的决策制定方法,用于处理步行者和自动驾驶汽车(AV)在非信号控制的道路横穿场景中的交互。此外,我们开发了一个设计框架,可以自动参数化决策制定。这种决策制定方法被设计成可以理解城市交通中的行人,并根据他们的意图做出反应,以实现类似人类的响应。本文的核心概念是将行人的意图预测和决策制定分为两个子系统。一方面,意图检测是一个数据驱动的黑盒模型。因此,它可以模拟行人的复杂行为。另一方面,决策制定是一个白盒模型,以确保可追溯性,并实现AV的快速验证和验证。这种白盒决策制定提供了类似于人类的行为和预防死锁的保证。另一个好处是,所提出的决策制定只需要很少的计算资源,使其可以在现实世界中使用。自动化参数化使用粒子群优化,并比较行人的两种不同模型:社交力模型和马尔可夫决策模型。因此,可以快速设计决策制定,考虑不同的行人行为。结果强化了所提出的认知驱动的决策制定的适用性。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【泡泡图灵智库】Detect-SLAM:目标检测和SLAM相互收益
泡泡机器人SLAM
14+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【泡泡图灵智库】Detect-SLAM:目标检测和SLAM相互收益
泡泡机器人SLAM
14+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员