Deep generative models have been applied with increasing success to the generation of two dimensional molecules as SMILES strings and molecular graphs. In this work we describe for the first time a deep generative model that can generate 3D molecular structures conditioned on a three-dimensional (3D) binding pocket. Using convolutional neural networks, we encode atomic density grids into separate receptor and ligand latent spaces. The ligand latent space is variational to support sampling of new molecules. A decoder network generates atomic densities of novel ligands conditioned on the receptor. Discrete atoms are then fit to these continuous densities to create molecular structures. We show that valid and unique molecules can be readily sampled from the variational latent space defined by a reference `seed' structure and generated structures have reasonable interactions with the binding site. As structures are sampled farther in latent space from the seed structure, the novelty of the generated structures increases, but the predicted binding affinity decreases. Overall, we demonstrate the feasibility of conditional 3D molecular structure generation and provide a starting point for methods that also explicitly optimize for desired molecular properties, such as high binding affinity.
翻译:在这项工作中,我们第一次描述了一个深重的基因模型,可以产生三维分子结构,以三维(3D)绑定口袋为条件。我们利用进化神经网络将原子密度网编码成不同的受体和离心和潜潜伏空间。离心和潜潜伏空间是支持新分子取样的变异空间。一个解码网络产生以受体为条件的新型离心机原子密度。分离原子随后适合这些连续密度,以创造分子结构。我们表明,从参考“种子”结构和生成的结构所定义的变异潜在空间中可以很容易地取样出有效而独特的分子。由于结构从种子结构的潜伏空间中采样得更远,产生的结构的新颖性会增加,但预测的紧凑性会减少。总体而言,我们展示了有条件的三维分子结构的可行性,并明确提供了一种最理想的分子结构的起始点,即其最优化的分子结构的起始点。