In this paper, we present a multiscale framework for solving the Helmholtz equation in heterogeneous media without scale separation and in the high frequency regime where the wavenumber $k$ can be large. The main innovation is that our methods achieve a nearly exponential rate of convergence with respect to the computational degrees of freedom, using a coarse grid of mesh size $O(1/k)$ without suffering from the well-known pollution effect. The key idea is a coarse-fine scale decomposition of the solution space that adapts to the media property and wavenumber; this decomposition is inspired by the multiscale finite element method. We show that the coarse part is of low complexity in the sense that it can be approximated with a nearly exponential rate of convergence via local basis functions, while the fine part is local such that it can be computed efficiently using the local information of the right hand side. The combination of the two parts yields the overall nearly exponential rate of convergence. We demonstrate the effectiveness of our methods theoretically and numerically; an exponential rate of convergence is consistently observed and confirmed. In addition, we observe the robustness of our methods regarding the high contrast in the media numerically.


翻译:在本文中,我们提出了一个多尺度框架,用以在不进行比例分离的多种媒体和高频系统中解决Helmholtz方程式,而无需进行比例分解;这种分解是由多尺度的有限要素法启发的。我们指出,粗糙部分的复杂程度较低,因为通过本地基功能,可以接近于接近指数的趋同速度,而精细部分则是局部的,因此可以利用右手侧的当地信息进行高效率的计算。这两个部分的结合产生了总体接近指数的趋同速度。我们从理论上和数字上展示了我们的方法的有效性;趋同的指数率一直得到观察和确认。此外,我们观察了我们在数字媒体中高对比度方法的稳健性。

0
下载
关闭预览

相关内容

【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
137+阅读 · 2021年3月5日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
36+阅读 · 2020年6月17日
专知会员服务
110+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Waveform Relaxation with asynchronous time-integration
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
【经典书】图理论与复杂网络导论,287页pdf
专知会员服务
137+阅读 · 2021年3月5日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
36+阅读 · 2020年6月17日
专知会员服务
110+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员