We study the problem of testing the null hypothesis that X and Y are conditionally independent given Z, where each of X, Y and Z may be functional random variables. This generalises, for example, testing the significance of X in a scalar-on-function linear regression model of response Y on functional regressors X and Z. We show however that even in the idealised setting where additionally (X, Y, Z) have a non-singular Gaussian distribution, the power of any test cannot exceed its size. Further modelling assumptions are needed to restrict the null and we argue that a convenient way of specifying these is based on choosing methods for regressing each of X and Y on Z. We thus propose as a test statistic, the Hilbert-Schmidt norm of the outer product of the resulting residuals, and prove that type I error control is guaranteed when the in-sample prediction errors are sufficiently small. We show this requirement is met by ridge regression in functional linear model settings without requiring any eigen-spacing conditions or lower bounds on the eigenvalues of the covariance of the functional regressor. We apply our test in constructing confidence intervals for truncation points in truncated functional linear models.
翻译:我们研究了关于X和Y在条件上独立的无效假设的测试问题。 X、Y和Z可能是功能随机变量。例如,这种概括性测试X在功能递减器X和Z的回溯Y反应的斜线性回归模型中的重要性。然而,我们表明,即使在额外(X、Y、Z)的非星标分布不小的理想环境中,任何测试的力量都无法超过其大小。为了限制无效,还需要进一步的建模假设以选择递减方法为基础来说明这些参数的方便方式。我们认为,选择方法的根据是选择在Z的X和Y各自的递减方法。因此,我们建议作为测试统计,结果残留物外产的Hilbert-Schmidt规范,并证明,在额外(X、Y、Z)非星标分布不小的情况下,I类错误控制是有保障的。我们证明,在功能线性模型环境中,不需要任何隔断性条件或较低的界限,而是以选择在Z的递减模型中选择回归的方法。我们因此建议,作为测试数据,作为测试结果外产值的功能性测试间隔。