Mixtures of fluids and granular sediments play an important role in many industrial, geotechnical, and aerospace engineering problems, from waste management and transportation (liquid--sediment mixtures) to dust kick-up below helicopter rotors (gas--sediment mixtures). These mixed flows often involve bulk motion of hundreds of billions of individual sediment particles and can contain both highly turbulent regions and static, non-flowing regions. This breadth of phenomena necessitates the use of continuum simulation methods, such as the material point method (MPM), which can accurately capture these large deformations while also tracking the Lagrangian features of the flow (e.g.\ the granular surface, elastic stress, etc.). Recent works using two-phase MPM frameworks to simulate these mixtures have shown substantial promise; however, these approaches are hindered by the numerical limitations of MPM when simulating pure fluids. In addition to the well-known particle ringing instability and difficulty defining inflow/outflow boundary conditions, MPM has a tendency to accumulate quadrature errors as materials deform, increasing the rate of overall error growth as simulations progress. In this work, we present an improved, two-phase continuum simulation framework that uses the finite volume method (FVM) to solve the fluid phase equations of motion and MPM to solve the solid phase equations of motion, substantially reducing the effect of these errors and providing better accuracy and stability for long-duration simulations of these mixtures.


翻译:液体和颗粒沉积物的混合物在许多工业、地质技术和航空航天工程问题中发挥着重要作用,从废物管理和运输(液体沉积物混合物)到直升机转子(气体沉积物混合物)下的粉尘震动等许多工业、地质技术和航空航天工程问题中,液体和颗粒沉积物混合流往往涉及数百亿个单个沉积颗粒的散装运动,其中既包括高度动荡的区域,也包括静态、非流动的区域。这种广泛的现象要求使用连续模拟方法,如材料点法(MPM)等,它可以准确地捕捉这些巨大的变形,同时跟踪流动的拉格朗加特征(如:颗粒表面、弹性压力等)。 最近使用两阶段MPM框架来模拟这些混合物的工作显示了巨大的希望;然而,这些方法受到下列因素的阻碍:微粒振动不稳定和难以确定流出/流出边界条件,此外,MMPM倾向于将二次误差作为材料变形,提高总体误差增长的速度,以模拟方式使M型运动的稳定性和M型平流流流流流流法逐步地逐步地使用。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员