In this paper, we focus on examination results when examinees selectively skip examinations, to compare the difficulty levels of these examinations. We call the resultant data 'selectively omitted examination data' Examples of this type of examination are university entrance examinations, certification examinations, and the outcome of students' job-hunting activities. We can learn the number of students accepted for each examination and organization but not the examinees' identity. No research has focused on this type of data. When we know the difficulty level of these examinations, we can obtain a new index to assess organization ability, how many students pass, and the difficulty of the examinations. This index would reflect the outcomes of their education corresponding to perspectives on examinations. Therefore, we propose a novel method, Peak Shift Estimation, to estimate the difficulty level of an examination based on selectively omitted examination data. First, we apply Peak Shift Estimation to the simulation data and demonstrate that Peak Shift Estimation estimates the rank order of the difficulty level of university entrance examinations very robustly. Peak Shift Estimation is also suitable for estimating a multi-level scale for universities, that is, A, B, C, and D rank university entrance examinations. We apply Peak Shift Estimation to real data of the Tokyo metropolitan area and demonstrate that the rank correlation coefficient between difficulty level ranking and true ranking is 0.844 and that the difference between 80 percent of universities is within 25 ranks. The accuracy of Peak Shift Estimation is thus low and must be improved; however, this is the first study to focus on ranking selectively omitted examination data, and therefore, one of our contributions is to shed light on this method.


翻译:在本文中,我们在有选择地跳过考试时注重考试结果,以比较考试的困难程度。我们称由此得出的数据为“选择性省略考试数据 ” 。这类考试的例子包括大学入学考试、认证考试和学生求职活动的结果。我们可以了解每次考试和组织接受的学生人数,但不包括考试者的身份。没有研究侧重于这类数据。当我们了解这些考试的困难程度时,我们可以获得新的指数来评估组织能力、学生通过人数和考试的困难程度。这个指数将反映他们与考试观点相对应的教育结果。因此,我们建议一种新颖的方法,即峰值变动估计考试的难度程度,以有选择地省略漏考试数据为基础。首先,我们对模拟数据采用峰值变动估计,但表明峰值变动估计率估计是大学入学考试难度的级别。因此,峰值调整率和大学排名排名的比值也适合估算大学的多级比例,也就是说,A、B、C和D级的比值是真实的比值等级。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
17+阅读 · 2020年9月6日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
14+阅读 · 2020年12月17日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
17+阅读 · 2020年9月6日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
模式国重实验室21篇论文入选CVPR 2020
专知
30+阅读 · 2020年3月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员