The paper analyzes the rotation averaging problem as a minimization problem for a potential function of the corresponding gradient system. This dynamical system is one generalization of the famous Kuramoto model on special orthogonal group SO(3), which is known as the non-Abelian Kuramoto model. We have proposed a novel method for finding weighted and unweighted rotation average. In order to verify the correctness of our algorithms, we have compared the simulation results with geometric and projected average using real and random data sets. In particular, we have discovered that our method gives approximately the same results as geometric average.


翻译:本文将平均旋转问题分析为相应梯度系统潜在功能的最小化问题。 这个动态系统是著名的Kuramoto特殊正统组SO(3)模型(称为非Abelian Kuramoto模型)的概括。 我们提出了一种新颖的方法来寻找加权和未加权的旋转平均值。 为了验证我们的算法的正确性, 我们用真实和随机数据集将模拟结果与几何和预测平均数进行了比较。 我们发现我们的方法与几何平均数大致相同。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
Top
微信扫码咨询专知VIP会员