Federated edge learning (FEEL) is a promising distributed learning technique for next-generation wireless networks. FEEL preserves the user's privacy, reduces the communication costs, and exploits the unprecedented capabilities of edge devices to train a shared global model by leveraging a massive amount of data generated at the network edge. However, FEEL might significantly shorten energy-constrained participating devices' lifetime due to the power consumed during the model training round. This paper proposes a novel approach that endeavors to minimize computation and communication energy consumption during FEEL rounds to address this issue. First, we introduce a modified local training algorithm that intelligently selects only the samples that enhance the model's quality based on a predetermined threshold probability. Then, the problem is formulated as joint energy minimization and resource allocation optimization problem to obtain the optimal local computation time and the optimal transmission time that minimize the total energy consumption considering the worker's energy budget, available bandwidth, channel states, beamforming, and local CPU speed. After that, we introduce a tractable solution to the formulated problem that ensures the robustness of FEEL. Our simulation results show that our solution substantially outperforms the baseline FEEL algorithm as it reduces the local consumed energy by up to 79%.


翻译:联邦边缘学习( FEEL) 是下一代无线网络有希望的分布式学习技术。 感觉保护用户的隐私,降低通信成本,并开发前所未有的边缘设备能力,通过利用网络边缘产生的大量数据来训练一个共享的全球模型。 然而,由于模型培训回合期间消耗的电力,这种感觉可能会大大缩短受能源限制的参与装置的寿命。 本文提出一种新的方法, 努力在感觉回合中最大限度地减少计算和通信能源消耗以解决这一问题。 首先, 我们引入了经过修改的本地培训算法, 明智地只选择根据预先设定的临界概率提高模型质量的样本。 然后, 将问题发展成联合能源最小化和资源分配最佳化问题, 以获得最佳的本地计算时间和最佳传输时间, 以考虑到工人的能源预算、 可用带宽、 频道状态、 格式和 本地 CPU 速度, 最大限度地减少总能源消耗量。 之后, 我们引入了一种可移植的解决方案, 以确保感知力。 我们的模拟结果显示, 我们的解决方案大大超过基准感觉力算算算法, 因为它将本地消费能源减少79 % 。

0
下载
关闭预览

相关内容

Feel,是一款科学地激励用户实现健康生活目标的应用。 想要减肥,塑形,增高,提升活力,睡个好觉,产后恢复……?针对不同的目标,Feel为您定制个性化的健康生活计划,并通过各种记录工具和激励手段帮您实现目标。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
专知会员服务
44+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月2日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员